
EDAP15: Program Analysis
ANALYSING ADVANCED LANGAUGE FEATURESANALYSING ADVANCED LANGAUGE FEATURES

Christoph Reichenbach



Welcome back!

▶ Questions?

2 / 38



Applying IFDS to Java

Java
public static void main(String[] args) {

Object obj = MyClass.getObj();
System.err.println(obj.toString());

}

Subroutine call
▶ Analogous to Teal-0 calls
▶ . . . need to know MyClass

Method call
▶ Dynamic Dispatch
▶ Exact subroutine depends on

dynamic type of obj

3 / 38



Challenges

▶ Other modules:
▶ Must have access to analysable representation of module
▶ Not always available

▶ Dynamic Dispatch:

obj.toString()

▶ Which toString method are we calling?
▶ Worst case assumption: any class (Integer.toString(),

HashSet.toString(), . . . )
▶ Can we do better?

4 / 38



The Call Graph

int main(int argc,
char *argv) {

if (argc > 1) {
f(argv[0]);

}
g();
return 0;

}

void f(char *s) {
for (char *p = s; *p; p++) {

*p = up(*p);
}
puts(s);

}

void g(void) {
puts("Hello, World!");

}

char up(char c) {
if (c >= ’a’ && c <= ’z’) {

return c - (’a’ - ’A’);
}
return c;

}

5 / 38



The Call Graph
▶ Gcall = ⟨P, Ecall⟩
▶ Connects procedures from P via call edges from Ecall
▶ ‘Which procedure can call which other procedure?’
▶ Often refined to:

‘Which call site can call which procedure?’
▶ Used by program analysis to find procedure call targets

main

f up

g

6 / 38



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

8 / 38



Dynamic Dispatch: Call Graph

Challenge: Computing the precise call graph:

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

9 / 38



Summary

▶ Call Graphs capture which procedure calls which other
procedure

▶ For program analysis, further specialised to map:

Callsite → Procedure

▶ Direct calls: straightforward
▶ Virtual calls (dynamic dispatch):

▶ Multiple targets possible for call
▶ No fully sound/precise solution in general

10 / 38



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

11 / 38



Class Hierarchy Analysis

Object

Main
main(String[])

A
f()
g()

B C D
g() g() g()

▶ Use declared type to determine possible targets
▶ Must consider all possible subtypes
▶ In our example: assume a.f can call any of:

A.f(), B.f(), C.f(), D.f()

12 / 38



Class Hierarchy Analysis: Example

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

CHA prediction

13 / 38



Summary

▶ Call Hierarchy Analysis resolves virtual calls a.f () by:
▶ Examining static types T of receivers (a : T )
▶ Finding all subtypes S <: T
▶ Creating call edges to all S.f , if S.f exists

▶ Sound
▶ Assuming strongly and statically typed language with subtyping

▶ Not very precise
▶ Java: ((Object) obj).toString():

Will use all toString() methods anywhere

14 / 38



Rapid Type Analysis

▶ Intuition:
▶ Only consider reachable code
▶ Ignore unused classes
▶ Ignore classes instantiated only by unused code

15 / 38



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

16 / 38



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

16 / 38



Rapid Type Analysis: Example

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

RTA prediction

17 / 38



Rapid Type Analysis Algorithm Sketch
Procedure RTA(mainproc, <:):
begin

Worklist := {mainproc}
VirtualCalls := ∅
LiveClasses := ∅
while s ∈ mainproc do

foreach call c ∈ s do
if c is direct call to p then

addToWorklist(p)
registerCallEdge(c → p)

else if c = v.m() and v : T then begin
VirtualCalls := VirtualCalls ∪ {c}
foreach S <: T do

addToWorklist(S.m)
registerCallEdge(c → S.m)

done
end else if c = new C() and C /∈ LiveClasses then begin

LiveClasses := LiveClasses ∪ {C}
foreach v .m() ∈ VirtualCalls with v : T and C <: T do

addToWorklist(C.m)
registerCallEdge(c → C.m)

done
end

done done end
18 / 38



Summary

▶ Rapid Type Analysis resolves virtual calls a.f () as follows:
▶ Find all classes that can be instantiated in reachable code
▶ Expand reachable code:

▶ For direct calls to p, add p as reachable
▶ For all virtual calls to v .m() with v : T :

⇒ Add S.m() as reachable
▶ Iterate until we reach a fixpoint

▶ Sound
▶ Assuming strongly and statically typed language with subtyping

▶ More precise than Class Hierarchy Analysis

19 / 38



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

20 / 38



Dependencies

Points-to analysis

Call graph Dataflow analyses

▶ Mutual dependencies across program analyses

21 / 38



Loose Composition

Loose Composition: Split analyses into multiple passes

▶ Each pass finishes before next pass starts
▶ Example:

1 RTA: compute initial call graph
2 Steensgaard on RTA output: conservative points-to graph
3 Build pointer-based call graph from Steensgaard’s results
4 Andersen’s analysis with refined (smaller) call graph

22 / 38



Tight Composition

Tight Composition: Analyses depend on each other’s
intermediate results

▶ Analyses run “together”
▶ Example:

▶ JastAdd circular attribute computations (Exercise 2)
▶ Could combine data flow analysis with points-to or call-graph

analysis
▶ Challenges:

▶ Traditional worklist algorithms:
▶ Complex manual engineering needed

▶ Declarative approaches:
▶ Must guarantee Monotonicity

23 / 38



Summary

▶ Mutual dependency between points-to, data flow, call graph
analyses

▶ Two approaches:
▶ Loose composition:

▶ One analysis after the other
▶ May need to run analyses multiple times

▶ Tight composition:
▶ Analyses can use each other’s intermediate results
▶ Difficult to engineer for worklist algorithms
▶ Easier with declarative approaches (attribute grammars, logic

programming)

24 / 38



Summary: Flow-Insensitive Analysis

▶ Monomorphic type inference
▶ Free variables, occurs check, unification
▶ Close to O(#AST nodes)

▶ Polymorphic type inference (Hindley-Damas-Milner)
▶ Type schemas and instantiation
▶ DEXPTIME-complete

▶ Steensgaard’s points-to analysis
▶ Similar to monomorphic type inference
▶ Close to O(#AST nodes)

▶ Andersen’s points-to analysis
▶ Points-to edges and inclusion edges that generate new edges
▶ O(#nodes3)

25 / 38



Summary: Data Flow Analyses

▶ MFP
▶ Precise for distributive frameworks
▶ O(#edges × height(L))

▶ MOP
▶ Precise for monotone frameworks
▶ Undecidable

▶ IFDS / IDE
▶ Interprocedural, precise for distributive frameworks
▶ O(#edges × #variables3)

(IDE: O(#edges × #variables3 × height(L)))

26 / 38



Summary: Call Graph Analyses

▶ Class Hierarchy analysis
▶ Trivial
▶ O(#classes × #methods)

▶ Rapid Type Analysis
▶ Transitive reachability check
▶ O(#classes × #methods)

▶ Points-to-based call graph analysis
▶ Mutual dependency
▶ Complexity and precision vary

27 / 38



Building Analyses: Considerations
▶ What level of soundness?

▶ Conservative: sound, but can be imprecise
▶ Optimistic: unsound, but can be more precise

▶ What performance needs?
▶ Trade-off: soundness vs. precision vs. performance
▶ More precise server analysis =⇒ faster client analysis
▶ Some analyses can be split into:

▶ fast/coarse “filter” pass
▶ slow/precise main pass

▶ Interactive use? Low latency, consider incremental analyses
▶ High reliability need? (Integrate interactive tools?)

. . .
▶ What do we know?

▶ Language semantics
▶ External libraries of importance
▶ User annotations / specs to help analysis

. . .
28 / 38



Points-to-Analysis Sensitivities
▶ Points-to analysis is nondistributive

▶ No easy route to precise interprocedural analysis
▶ No known effective procedure summary representation

▶ We still want non-distributive analyses to be precise
▶ Example: out-of-bounds checking in method-of-interest copy()

needs size of array (assumption: we need array allocation site)
▶ Approach: repeat analysis on same code for multiple contexts

▶ no bounds violation in copy at C0
▶ bounds violation in copy at C1 ⇐ A3
▶ bounds violation in copy at C2 ⇐ C2

array0 = { } // A0
array3 = { 0, 1, 2 } // A1
c0 = new Copier(array3) // A2
c1 = new Copier(array0) // A3
c0.copy(array3) // C0
c1.copy(array3) // C1
c0.copy(array0) // C2

class Copier {
Copier(int[] s) {

this.src = s
}
copy(int[] dest) {

dest[0] = this.src[0]
} }

29 / 38



k-call-site Sensitivity
▶ Call-site sensitivity (Doop terminology; traditionally called

context-sensitivity) analyses method once per call site
▶ Can determine that C0 is safe, C1 is unsafe

▶ Analyses get0 twice: Two different contexts C0 and C1
▶ Simple call-site sensitivity cannot distinguish C2 and C3

▶ Will only analyse get0 once, for context C4
▶ 2-call-site sensitivity: extend context to caller’s caller

▶ Contexts: ⟨C2, C4⟩ and ⟨C3, C4⟩
▶ Need 3-call-site sensitivity etc. for deeper calls

array0 = {}
v = get0({ 0, 1 }) // C0
v = get0(array0) // C1
v = f({ 0, 1 }) // C2
v = f(array0) // C3
v = g({ 0, 1 }) // C5

int get0(int[] array) {
return array[0] }

int f(int[] array) {
return get0(array) // C4 }

int g(int[] array) {
return f(array) // C6 }

30 / 38



Summary
▶ Analysis sensitivities allow us to analyse methods more precisely

▶ Multiple analyses of same method in different contexts
▶ Context provides additional information (args, globals, heap)
▶ With procedure summaries (cf. IFDS / IDE): no repeat analysis

necessary, but only for distributive frameworks
▶ Call site sensitivity (traditionally called context sensitivity) uses call

sites as context
▶ k-call site sensitivity for k > 1 uses call sites, parent call sites,

grandparent call sites etc. as context
▶ Other approaches:

▶ Object sensitivity uses abstract receiver objects
▶ Plain k-object sensitivity for k > 1 abstract receiver objects of

the ancestor method call(s)
▶ Full k-object sensitivity uses abstract receiver objects of the

ancestor method call(s) for current object’s constructor call
▶ Type sensitivity abstracts over full k-object sensitivity by

merging call sites from same type
▶ Worst case analysis cost exponential over k 31 / 38



Analysing Realistic Programs
▶ Multiple analyses
▶ Mutual dependency between analyses
▶ Challenges:

▶ IFDS (fast, scalable) needs distributive framework
▶ Pointer analysis is:

▶ crucial
▶ Either imprecise or slow
▶ not distributive

▶ Making non-distributive analyses precise may require:
▶ call-site sensitivity without procedure summaries
▶ Multiple levels of call-site sensitivity
▶ Alternatives: object sensitivity, type sensitivity
▶ Picking the right one depends on input program, libraries,

frameworks
▶ Language semantics may be imprecisely defined
▶ Certain language features intrinsically hard to analyse

32 / 38



Reflection
Java
Class<?> cl = Class.forName(string);
Object obj = cl.getConstructor().newInstance();
System.out.println(obj.toString());

▶ Instantiates object by string name
▶ Similar features to call method by name
▶ Challenge:

▶ obj may have any type ⇒ imprecision
▶ Sound call graph construction very conservative

▶ Approaches
▶ Dataflow: what strings flow into string?

▶ Common: code draws from finite set or uses string prefix/suffix
(e.g., ("com.x.plugins." + . . . ))

▶ Class.forName: class only from some point in package hierarchy
▶ Dynamic analysis

33 / 38



Dynamic Loading
C
handle = dlopen("module.so", RTLD_LAZY);
op = (int (*)(int)) dlsym(handle, "my_fn");

▶ Dynamic library and class loading:
▶ Add new code to program that was not visible at analysis time

▶ Challenge:
▶ Can’t analyse what we can’t see

▶ Approaches:
▶ Conservative approximation

▶ Tricky: External code may modify all that it can reach
▶ With dynamic support and static annotation:
▶ Allow only loading of signed/trusted code

▶ signature must guarantee properties we care about
▶ annotation provides properties to static analysis

▶ Proof-carrying code
▶ Code comes with proof that we can check at run-time

34 / 38



Native Code
Java
class A {

public native Object op(Object arg);
}

▶ High-level language invokes code written in low-level
language
▶ Usually C or C++
▶ May use nontrivial interface to talk to high-level language

▶ Challenge:
▶ High-level language analyses don’t understand low-level

language
▶ Approaches:

▶ Conservative approximation
▶ Tricky: External code may modify anything

▶ Manually model known native operations (e.g., Doop)
▶ Multi-language analysis (e.g., Graal)

35 / 38



‘eval’ and dynamic code generation

Python
eval(raw_input())

▶ Execute a string as if it were part of the program
▶ Challenge:

▶ Cannot predict contents of string in general
▶ Approaches:

▶ Conservative approximation
▶ Tricky: code may modify anything

▶ Dynamically re-run static analysis
▶ Special-case handling (cf. reflection)

36 / 38



Summary

▶ Static program analysis faces significant challenges:
▶ Decidability requires lack of precision or soundness for most of

the interesting analyses
▶ Reflection allows calling methods / creating objects given by

arbitrary string
▶ Dynamic module loading allows running code that the

analysis couldn’t inspect ahead of time
▶ Native code allows running code written in a different

language
▶ Dynamic code generation and eval allow building arbitrary

programs and executing them
▶ No universal solution
▶ Can try to ‘outlaw’ or restrict problematic features, depending

on goal of analysis
▶ Can combine with dynamic analyses

37 / 38



Soundiness

▶ Can’t analyse language feature?
⇒ We get ⊤
⇒ Many false positives
⇒ Tool may be useless

▶ Google SWE practice: Bug checkers with > 5% false positives
disabled automatically

▶ Soundness may not be useful
▶ Alternative proposal: Soundiness

▶ Be explicit about unsupported language features

Soundiness: “capture all dynamic behaviour within reason”

38 / 38


