
EDAP15: Program Analysis
DATA FLOW ANALYSIS 4: GOING INTERPROCEDURALDATA FLOW ANALYSIS 4: GOING INTERPROCEDURAL

Christoph Reichenbach



Welcome back!

▶ Homework #1 extended to Tuesday, noon (12:00)
▶ Homework #2 released
▶ Lectures this week:

▶ Interprocedural Data Flow
▶ Analysing Object-Oriented Programs

2 / 32



Summarising Procedures (Reaching
Values)

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

▶ Compose transfer functions:
▶ transb0 ◦ transb1 = [z 7→ 0]
▶ transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
▶ transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) = [z 7→ {x , y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) ◦ transb4 = [z 7→ {x , y}]

3 / 32



Procedure Summaries vs Recursion

f calls g calls h calls f

▶ Reqiures additional analysis to identify who calls whom
▶ Compute summaries of mutually recursive functions together
▶ Recursive call edges analogous to loops

4 / 32



Procedure Summaries
▶ Composing transfer functions yields a combined transfer

function for f():

transf = [return 7→ {x , y}]
▶ Use transf as transfer function for f(), discard f’s body
▶ Opportunities:

▶ Can yield compact subroutine descriptions
▶ Can speed up call site analysis dramatically

▶ Challenges:
▶ More complex to implement
▶ Recursion remains challenging

▶ Limitations:
▶ Requires suitable representation for summary
▶ Requires mechanism for abstracting and applying summary
▶ Worst cases:

▶ transf is symbolic expression as complex as f itself
5 / 32



Representation Relations
Example procedure summary representation:

x := null;
y := y;

0

0

x

x

y

y

if x != y {
x := y;

}
y := 1;

0

0

x

x

y

y

{ t := x
x := y
y := t }

0

0

x

x

y

y

‘May be null’ analysis

▶ P(v): v may be null
▶ P(0) always holds

▶ c d :
if P(c) ∈ inb then P(d) ∈ outb

▶ Representation Relations relate
inb and outb variables V

▶ R ⊆ (V ∪ {0}) × (V ∪ {0})
▶ if ⟨0, X ⟩ ∈ R :

X always ‘may be null’ in outb
▶ if ⟨Y , X ⟩ ∈ R :

If Y ‘may be null’ in inb:
⇒ X ‘may be null’ in outb 6 / 32



Representation Relations and
Distributivity

7 / 32



Composing Representation Relations

Representation Relations (may be null analysis):
x := null;
y := y;

0

0

x

x

y

y

if x != y {
x := y;

}
y := 1;

0

0

x

x

y

y

{ t := x;
x := y;
y := t; }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

8 / 32



Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”

10 / 32



Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”

10 / 32



Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”
10 / 32



Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)

▶ Equivalently for ‘Must’ analysis:
‘x must be null’ = not (‘x may be non-null’)

▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2

11 / 32



Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)
▶ Equivalently for ‘Must’ analysis:

‘x must be null’ = not (‘x may be non-null’)
▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2

11 / 32



A Dataflow Worklist Algorithm: IFDS

▶ Call-site sensitive interprocedural data flow algorithm
▶ IFDS = (Interprocedural Finite Distributive Subset problems)
▶ ‘Exploded Supergraph’: G ♯ = (N ♯, E ♯)

▶ N♯ = NCFG × (V ∪ {0})
▶ Plus parameter/return call edges

▶ Property-of-interest holds if reachable from ⟨bs
main, 0⟩

▶ bs
main is CFG ENTER node of main entry point

▶ Key ideas:
▶ Worklist-based
▶ Construct Representation Relations on demand
▶ Construct ‘Exploded Supergraph’

▶ CFG of all functions × V ∪ {0}

12 / 32



IFDS Datastructures

⟨b0, v0⟩ → ⟨b3, v0⟩
⟨⟨b0, v0⟩, ⟨b3, v0⟩⟩Instead of we also write:

⟨b0, v0⟩ ⟨b3, v0⟩
WorkList edge All WorkList edges are also PathEdge edges

PathEdge edge Result of our analysis

N♯-edge

SummaryInst Generated from summary nodes
Otherwise equivalent to N♯-edges

13 / 32



IFDS Strategy

▶ Algorithm distinguishes between three types of
nodes:
▶ Exit nodes (be

f )
▶ Call nodes (bc

x )
▶ Other nodes

e := f(1, 5)

(return)

bc
x

br
x

ENTER f
bs

f

EXIT f
be

f

14 / 32



On-demand processing

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

15 / 32



Running Example

Teal-0: main()
var default := null;
fun main() = {

var a := get(3);
default := 1;
var b := get(3);
return b;

}

Teal-0: get()
fun get(c) = {

if c == 0 {
z := default;

} else {
z := read_int();
if z < 0 {

z := get(c - 1);
}

}
return z;

}

16 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

18 / 32



The IFDS Algorithm: Initialisation and
Propagation)

Procedure Init():
begin

WorkList := PathEdge := ∅
propagate(⟨bs

main, 0⟩ → ⟨bs
main, 0⟩)

ForwardTabulate()
end

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

19 / 32



IFDS: Forward Tabulation
Procedure ForwardTabulate():
begin

while n0 → n1 ∈ WorkList do
WorkList := WorkList \ {n0 → n1}
⟨b0, v0⟩ = n0; ⟨b1, v1⟩ = n1
if b1 is neither Call nor Exit node then

foreach n1 → n2 ∈ E ♯:
propagate(n0 → n2)

else if b1 is Call node then begin
foreach call edge n1 → n2 ∈ E ♯:

propagate(n2 → n2)
foreach non-call edge n1 → n2 ∈ E ♯ ∪ SummaryInst:

propagate(n0 → n2)
end else if b1 is Exit node then begin

foreach caller/return node pair bc
i , br

i that calls b0 and vars v0, v1 do
ns = ⟨bc

i , v0⟩; nr = ⟨bc
i , v1⟩

if {ns → n0, n0 → n1, n1 → nr } ⊆ E ♯ and not ns → nr ∈ SummaryInst then begin
SummaryInst := SummaryInst ∪ {ns → nr }
foreach nz → ns ∈ PathEdge:

propagate(nz , nr )
end done end done end

20 / 32



Summary: IFDS Algorithm
▶ Computes yes-or-no analysis on all variables

▶ Original notion of ‘variables’ is slightly broader)
▶ Represents facts-of-interest as nodes ⟨b, v⟩:

▶ b is node (basic block) in CFG
▶ v is variable that we are interested in

▶ Uses
▶ ‘Exploded Supergraph’ G♯

▶ All CFGs in program in one graph
▶ Plus interprocedural call edges

▶ Representation relations
▶ Graph reachability
▶ A worklist

▶ Distinguishes between Call nodes, Exit nodes, others
▶ Demand-driven: only analyses what it needs
▶ Whole-program analysis
▶ Computes Least Fixpoint on distributive frameworks

21 / 32



BONUS SLIDES

22 / 32



Beyond True and False
v− v0 v+

▶ What if abstract domain is not boolean?
▶ e.g., {⊤, A+, A−, A0, ⊥}

▶ Multiple boolean properties per variable
▶ easy for powerset lattice P({+, −, 0})

▶ Limitation: Transfer functions only depend on one variable
▶ Some problems not representable, others must adapt lattice

Consider b1 = y := 0 - x :

transb1 =

0

0

x+

x+

x0

x0

x−

x−

y+

y+

y0

y0

y−

y−

This is how the algorithm was originally proposed
23 / 32



Extending IFDS?

▶ Not all analyses map well to IFDS
▶ Core ideas are appealing:

▶ Automatically compute procedure summaries
▶ Exploit graph reachability + worklist for dependency tracking

It is possible to extend this to other classes of problems

24 / 32



Linear Reaching Values

Statement inb outb
x := 42 M M with [x 7→ 42]
x := y + 1 M = {[y 7→ c], . . .} M with [x 7→ c + 1]
x := y * 7 M = {[y 7→ c], . . .} M with [x 7→ c × 7]
x := y + z M M with [x 7→ ⊤]

▶ “M with [x 7→ e]” means “Remove from M any [x 7→ . . .] if
it exists, and then add [x 7→ e]”.

▶ The above sketches a distributive reaching values analysis
▶ Each annotation of form v1 7→ c1 × v2 + c2
▶ No support for adding / multiplying / . . . multiple variables

▶ Encode in IFDS?

25 / 32



Labelling Graph Edges

x := 2;
y := y * 7;

0

0

x

x

y

y

[x 7→ 2]
[y 7→ 7 × y ]

x := y + 2;
y := 3 * y + 1;

0

0

x

x

y

y
[x 7→ y + 2] [y 7→ 3 × y + 1]

{ t := x;
x := y;
y := t; }

0

0

x

x

y

y
[y 7→ x ] [x 7→ y ]

[x 7→ 2]

[y 7→ 21 × y + 1][x 7→ 7 × y + 2]

[x 7→ 21 × y + 1] [y 7→ 7 × y + 2]

▶ Extending IFDS to support information processing
▶ Carrying over key techniques:

▶ Track dependencies
▶ Generate procedure summaries on the fly 26 / 32



Representation

{
[x 7→ cx ,2 × x + dx ,2]
[y 7→ cy ,2 × y + dy ,2]

}
◦

{
[x 7→ cx ,1 × v + dx ,1]
[y 7→ cy ,1 × w + dy ,1]

}
={

[x 7→ (cx ,1 × cx ,2) × v + (dx ,2 + cx ,2 × dx ,1)]
[y 7→ (cy ,1 × cy ,2) × w + (dy ,2 + cy ,2 × dy ,1)]

}

▶ ci , di : constants
▶ v , w : program variables
▶ (Maps of) linear functions are closed under composition
▶ Must support ⊔ to merge, map to ⊤ on mismatch{

[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,1 × v3 + dy ,1]

}
⊔

{
[x 7→ cx ,1 × v1 + dx ,1]
[y 7→ cy ,2 × v2 + dy ,2]

}
={

[x 7→ cx ,1 × x + dx ,1]
[y 7→ ⊥]

}
27 / 32



Micro-Functions and Lattices

▶ Extend lattices to such ‘Micro-Functions’:

a b

⊤

⊥

x 7→ a x 7→ b

x 7→ ⊤

x 7→ ⊥

28 / 32



Micro-Functions, Efficient
Representation

▶ Micro-Functions must support:
Encoding O(1) space
Computation f (x) O(1) time
Equality testing f = f ′ O(1) time
Composition f ◦ f ′ O(1) time
Meet f ⊔ f ′ O(1) time

▶ Micro-functions are efficiently representable if they satisfy
space / time constraints
▶ Required for the algorithm’s time bounds

▶ Other examples:
▶ IFDS problems
▶ Value bounds analysis

29 / 32



The IDE Algorithm (1/1)
▶ Interprocedural Distributive Environments algorithm
▶ Extends IFDS to ‘labelled’ edges as described above
▶ Assumes distributive framework over micro-functions
▶ Algorithmic changes:

▶ First phase analogous to IFDS
▶ Second phase applies computed functions to read out results

▶ Maintain/update mapping from path edges to
micro-functions f :

PathEdge = {⟨b0, v0⟩
f0−→ ⟨b1, v1⟩, . . .}

▶ ‘Missing edges’ equivalent to x 7→ ⊥
▶ Initialise:

PathEdge = {⟨b0, v0⟩
v1 7→⊥−→ ⟨b1, v1⟩, . . .}

▶ Always exactly one f per {⟨b0, v0⟩
f→ ⟨b1, v1⟩} ∈ PathEdge

30 / 32



The IDE Algorithm (2/2)
Procedure propagate(n1 → n2): -- IFDS version
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

⇓

Procedure propagateIDE(n1
f→ n2): -- IDE version

begin
let n1

f ′

→ n2 ∈ PathEdge
fupd := f ⊔ f ′

if fupd = f ′ then
return

PathEdge := (PathEdge \ {n1
f ′

→ n2}) ∪ {n1
fupd→ n2}

WorkList := WorkList ∪ {n1 → n2}
end

31 / 32



Summary

▶ IDE strictly generalises IFDS
▶ Utilises Micro-Functions to ensure efficient summaries:

▶ Intra-procedural summaries via PathEdge
▶ Inter-procedural procedure summaries via SummaryInst

▶ Runtime is O(LED3) if micro-functions are efficiently
representable
▶ L: Lattice height

▶ IFDS: 1
▶ IDE: length of longest descending chain

▶ E : Number of control-flow edges
▶ D: Number of variables

▶ IFDS supported by many popular dataflow frameworks

32 / 32


