LUND ——10

f EDAP15: Program Analysis
DATA FLOW ANALYSIS 4: GOING INTERPROCEDURAL

Christoph Reichenbach

Welcome back!

» Homework #1 extended to Tuesday, noon (12:00)
» Homework #2 released
» Lectures this week:

» Interprocedural Data Flow
» Analysing Object-Oriented Programs

2/32

Summarising Procedures (Reaching
Values)

» Compose transfer functions:
> transp, o trans,, = [z — 0]
> transp, o transy, o transp, = [z — {x}]
> transp, o transy, o transp, = [z — {y}]
> transp, o transy, o (transp, U transp,) = [z — {x,y}]
> transp, o transp, o (transp, Ll transy,) o transp, = [z — {x,y}]
3/32

Procedure Summaries vs Recursion

f calls g calls h calls £

» Reqiures additional analysis to identify who calls whom
» Compute summaries of mutually recursive functions together
» Recursive call edges analogous to loops

4/32

Procedure Summaries

» Composing transfer functions yields a combined transfer
function for £():

transy = [return — {x, y}]

» Use transy as transfer function for £ (), discard f's body
» Opportunities:
» Can yield compact subroutine descriptions
» Can speed up call site analysis dramatically
» Challenges:
» More complex to implement
» Recursion remains challenging
» Limitations:
» Requires suitable representation for summary
» Requires mechanism for abstracting and applying summary
» Worst cases:

> transs is symbolic expression as complex as £ itself
5/32

Representation Relations

Example procedure summary representation:

null;
MBS

=y {

=y,

1;

nnn
<

N\

O=-—O

O=-—O

X

X

‘May be null’ analysis

» c—d:
if P(c) € in, then P(d) € out,
» Representation Relations relate
iny and out, variables

»RC (VU{0}) x (Yu{0})
»if (0, X) € R:

X always ‘may be null’ in out,
»if (Y, X) € R:

If Y ‘may be null’ in ing:

= X ‘mav be null’ in out, 6/32

Representation Relations and
Distributivity

7/32

Composing Representation Relations

Representation Relations (may be null analysis):

X := null;
y =Y

1

if x 1=y {
X 1= y;

}
y =

{t

X
y

R A

O - —O

X

y

Composed representation relations are again representation relations

8/32

Joining Control-Flow Paths

e NN

X := null; Z := null
y =7
if x 1=y A{

X = y; 0 x y =z 0 x y =z
}
y :=1
{t:=x

X =y

yi=t} 0 x y z

I LNV

> €

10/32

Joining Control-Flow Paths

/o x. y z
NGaNSN

X := null; 2 := null
y =Y
if x 1=y {

X 1= y; 0 x ¥y =z 0 x vy z
¥
y :=1
{t :=x

X =y

vi=t} 0 x y z

! (NI

> €

10/32

Joining Control-Flow Paths

null

% X y z
X := null; -
y =¥
if x 1=y {
X 1=y;
¥
y =
{t:=x
X 1=y ' LU B
vi=t} 0 x y z
I N,
7 A)
Logical “Or”

10/32

Dataflow via Graph Reachability

n=(b,v)

» Assume binary latice ({T, L}, C, M, L)
»TUy=T=xUTand L1l =1
> Typical for ‘May’ analysis (P(x) = ‘x may be null’)

» Encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)

» b: CFG node

» v: Variable or 0

> 0: (b1,0)—=(b2,y): P(y) at by holds always
> Variable: (b1, x)—e(bs,y): P(x) at by = P(y) at by

11/32

Dataflow via Graph Reachability

n=(b,v)

» Assume binary latice ({T, L}, C, M, L)
»TUy=T=xUTand L1l =1
> Typical for ‘May’ analysis (P(x) = ‘x may be null’)
» Equivalently for ‘Must’ analysis:
‘x must be null’ = not (‘x may be non-null’)
» Encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)
» b: CFG node
» v: Variable or 0

> 0: (b1,0)—=(b2,y): P(y) at by holds always
> Variable: (b1, x)—e(bs,y): P(x) at by = P(y) at by

11/32

A Dataflow Worklist Algorithm: IFDS

» Call-site sensitive interprocedural data flow algorithm
» IFDS = (Interprocedural Finite Distributive Subset problems)
» ‘Exploded Supergraph’: G* = (N¥, E¥)
> N* = Nerg x (VU {0})
> Plus parameter/return call edges
» Property-of-interest holds if reachable from (b;,.;., 0)
> bpain is CFG ENTER node of main entry point
> Key ideas:
» Worklist-based

» Construct Representation Relations on demand
» Construct 'Exploded Supergraph’

» CFG of all functions x V U {0}

12/32

IFDS Datastructures

Instead of {({bo,), (b3, vo)) we also write:
(bo, vo) — (b3, vo)

WORKLIST edge All WORKLIST edges are also PATHEDGE edges
<b07 V0> ------ > <b37 V0>
PATHEDGE edge Result of our analysis
Nf-edge

SUMMARYINST Generated from summary nodes
Otherwise equivalent to Nf-edges

13/32

IFDS Strategy

» Algorithm distinguishes between three types of
nodes:

» Exit nodes (b¢)
» Call nodes (b°)

» Other nodes
b &NTER f

@ = £(1, B[
Tetuny

e]

14/32

On-demand processing

Procedure propagate(n; — ny):
begin
if n1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — no}
WORKLIST := WORKLIST U {n; — np}
end

15/32

Running Example

Teal-0: main()

var default := null;
fun main() = {
var a := get(3);
default := 1;
var b := get(3);
return b;

Teal-0: get()

fun get(c) = {

if ¢ == 0 {
z := default;

} else {
z := read_int();
if z < 0 {

z := get(c - 1);

}

+

return z;

}

16 /32

Coderura o]

18/32

d bO bget 0,2z70xd
o d := null NTER get ;’/‘

==

|
) = 1] Gt = (N!, EY)

[] [] "
@‘ where N C (VU {0}) x Ncgg N
o fn b := get(a) _13\ $
i N
- e bg 4 7
® I T ° \I/(r_e'liliﬂl (rety > >
! I I ! @ - eturn z —)é““

18/32

Initialisation
> WORKLIST =

{<brsnain7 0> - <br5nain7 0>}
b J» Analogous self-loops for

etu] static variables with
- property of interest (d)
et
% %‘g XIT

» e €¢ WORKLIST —
e € PATHEDGE

IS

Initialisation
> WORKLIST =

{<brsnain7 0> - <br5nain7 0>}
b J» Analogous self-loops for

etu] static variables with
- property of interest (d)
et
% %‘g XIT

» e €¢ WORKLIST —
e € PATHEDGE

IS

Coderura o]

Procedure propagate(n; — m):
begin
if n1 — ny € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — mp}
end

Hi
Step (regular edge)

> Pick e off the work queue
e=n — N

> np neither call (c) nor exit (e)?

o> Find all np — n3
propagate(n; — n3)

2> Remove e from WORKLIST

> e remains in PATHEDGE

18/ 32

Coderura o]

18/32

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

Coderura o] |

T vzTa

18/32

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

Coderura o] |

T vzTa

18/32

Coderura o]

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?
> Init called procedure:
> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((b7, v) — (b7, v))

|_|> Propagate along intra-edges

(As with regular edges)

< 0ZCd
18/32

Coderura o]

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?
> Init called procedure:
> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((b7, v) — (b7, v))

|_|> Propagate along intra-edges

(As with regular edges)

< 0ZCd
18/32

Coderura o]

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?
> Init called procedure:
> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((b7, v) — (b7, v))

|_|> Propagate along intra-edges

(As with regular edges)
> Propagate along Summarylnst:

< 0ZCd
18/32

Coderura o]

18/32

Coderura o]

18/32

Coderura o]

18/32

1
Step (exit edge)

» Pick e = n; — n5 off the work queue
> n§ is exit (e)?
(n3 is always start node.)
> For each call/return pair nf, n! that
calls the current function,
if nf — nj — nS — nl:
> If nf — nf ¢ SUMMARYINST:
> Add it to SUMMARYINST

> Find all n — nf € PATHEDGE and
propagate(n — nf)

18/32

coer Qlrsvar

IO IT main

get
NTER get

bS

:= null

O
o

TER main

:= get(a)

(return)

'hj‘
®oeo o0 @eturnb
LG I a IT main

18/32

18/32

eturn b
IT main

@ TER main
Ghn)

return)

@ TER main
(

eturn b

IT main

18/32

TER main

(return)

eturn b

IT main

18/32

Qe
e

(return)
(return)

a .

@ TER main

eturn b

IT main

18/32

%A A

-Step (call edge)

> Pick e = n; — n§ off the work queue

> n is call (c)?
> Init called procedure:
» Find all parameter edges
t =nS — (b, v) € E*
> propagate((b3, v) = (b, v))
> Propagate along intra-edges
(As with regular edges)

> Propagate along Summarylnst:
(As with regular edges)

18/32

Tce
Qe
e

o0 @ TER main

Oz c

$0 47 Qv

eo0o0 o0 eturnb

IT main

18/32

:= get(a)

bs
(return)

Coerura o]

0
0°=6ld

18/32

/ .

Worklist empty: Done g\

-]
213

> Can now read results off of
PATHEDGE
> e.g. at end of main():
> a may be null
> b and d definitely non-null
U (o8

18/32

The IFDS Algorithm: Initialisation and

Propagation)

Procedure Init():

begin
WORKLIST := PATHEDGE := ()
propagate(<brsnain’ 0> - <brs;13in7 0>)
ForwardTabulate()

end

Procedure propagate(n; — n):
begin
if N1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — mp}
end

19/32

IFDS: Forward Tabulation

Procedure ForwardTabulate():
begin
while np — n; € WORKLIST do
WorkList := WorkList \ {ng — n;}
(bo, o) = no; (b1, v1) = m
if by is neither Call nor Exit node then
foreach n, — n, € E*:
propagate(ny — m2)
else if b; is Call node then begin
foreach call edge m — np € E*:
propagate(n, —)
foreach non-call edge n1 — ny € E* U SUMMARYINST:
propagate(ng — n2)
end else if b; is Exit node then begin
foreach caller/return node pair bf, b/ that calls by and vars v, v1 do
ns = (b, w); nr = (bf,v1)
if {ns = no,np — m,m — n,} C E* and not n; — n, € SUMMARYINST then
SUMMARYINST := SUMMARYINST U {ns — n,}
foreach n, — n, € PATHEDGE:
propagate(n;, n)

end done end done end
20/32

Summary: IFDS Algorithm

» Computes yes-or-no analysis on all variables
» Original notion of ‘variables’ is slightly broader)
» Represents facts-of-interest as nodes (b, v):
> b is node (basic block) in CFG
» v is variable that we are interested in
> Uses
> ‘Exploded Supergraph’ G*
> All CFGs in program in one graph
> Plus interprocedural call edges

» Representation relations
» Graph reachability
» A worklist

» Distinguishes between Call nodes, Exit nodes, others
» Demand-driven: only analyses what it needs
> Whole-program analysis

» Computes Least Fixpoint on distributive frameworks
21/32

BONUS SLIDES

Beyond True and False

» What if abstract domain is not boolean?
reg, {T,AV, A= A0 1}
» Multiple boolean properties per variable
> easy for powerset lattice P({+, —,0})
» Limitation: Transfer functions only depend on one variable
» Some problems not representable, others must adapt lattice

Consider by = [y = 0 - x}

0 t ¥ x gyt 0 vy
[] [) []
trans,, = I
[® @
0 t X x gy yo vy

This is how the algorithm was originally proposed

23/32

Extending IFDS?

» Not all analyses map well to IFDS
» Core ideas are appealing:

» Automatically compute procedure summaries
» Exploit graph reachability + worklist for dependency tracking

It is possible to extend this to other classes of problems

24/32

Linear Reaching Values

Statement ‘ ing ‘ outy

X := 42 M M with [x — 42]
x:=y+ 1| M={[y—c],...} | Mwith [x = c+1]
x =y *x 7| M={ly—c],...} | Mwith [x — ¢ x 7]
x:=y+z | M M with [x — T]

» “M with [x — e]" means “Remove from M any [x — ..] if
it exists, and then add [x — e]".

» The above sketches a distributive reaching values analysis
» Each annotation of form vi — ¢1 X vo + &
» No support for adding / multiplying / ... multiple variables

» Encode in IFDS?

25/32

Labelling Graph Edges

x 1= 2; 0 x—2 * y
pimywTs | |y 7% 1
0 X y
i [x»—>2]* l
~ " 0 x ¥
X =y + 2;
y :=§*y+1; l [x—=y+2] l[)“—>3><}’+1]
0 X y
~ l [XH7XV+211 l[)"—>21><)/+1]
{t :=x; 0 X y
e
y :=t; } 0 x y
[x =21 xy+1] [y—=7xy+2]

» Extending IFDS to support information processing
» Carrying over key techniques:
» Track dependencies
» Generate procedure summaries on the fly 26/32

Representation

[x = o X x + dy o) . [x = co1 X v+ de]
[y = c2xy+do] [y =1 xwdy]

[X — (CX71 X CXT2) X v+ (dX,2 + Cx,2 X dx,l)]
[y = (cy1 X ¢y2) X w+(dyo+ cyo % dy1)]

» ¢;, d;: constants
> v, w: program variables
» (Maps of) linear functions are closed under composition
» Must support L to merge, map to T on mismatch
{ [X = Cx1 X v+ dx,l] } L { [X = Cx1 X Vi +dX11] }

[y = Cy1 X V3 + dy71] [y = Cyo2 X V2 + dy,2]

{ [x — 1 X x + di 1] }

[y — 1]

27/32

Micro-Functions and Lattices

» Extend lattices to such ‘Micro-Functions':

VANRVAN
AVERNVA

28/32

Micro-Functions, Efficient
Representation

» Micro-Functions must support:

Encoding O(1) space
Computation f(x) O(1) time
Equality testing f =1f" O(1) time
Composition fof" O(1) time
Meet fuf O(1) time

» Micro-functions are efficiently representable if they satisfy
space / time constraints

» Required for the algorithm'’s time bounds
» Other examples:

» IFDS problems
» Value bounds analysis

29/32

The IDE Algorithm (1/1)

> Interprocedural Distributive Environments algorithm
» Extends IFDS to ‘labelled’ edges as described above
» Assumes distributive framework over micro-functions
» Algorithmic changes:
» First phase analogous to IFDS
» Second phase applies computed functions to read out results
» Maintain/update mapping from path edges to
micro-functions f:

PATHEDGE = { (b, vo) —% (b1, v1),...}

» ‘Missing edges’ equivalent to x — L
> Initialise:

PATHEDGE = {(bg, vo) =5 (b, v1),...}

> Always exactly one f per {(by, vo) = (b1, 1)} € PATHEDCE

30/32

The IDE Algorithm (2/2)

Procedure propagate(n; — np): —— IFDS version
begin
if N1 — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — ny}
end

4

Procedure propagate;pe(m EA np): —— IDE version
begin
let ny L/> ny € PATHEDGE
fupd 1= f L
if fipa = f’ then
return

! fu
PATHEDGE := (PATHEDGE \ {m N mB)U{m % m}

WORKLIST := WORKLIST U {n; — ny}
end
31/32

Summary

» IDE strictly generalises IFDS

» Utilises Micro-Functions to ensure efficient summaries:
» Intra-procedural summaries via PATHEDGE
» Inter-procedural procedure summaries via SUMMARYINST

» Runtime is O(LED?) if micro-functions are efficiently
representable
» L: Lattice height
> IFDS: 1
> IDE: length of longest descending chain
» E: Number of control-flow edges
» D: Number of variables

» IFDS supported by many popular dataflow frameworks

32/32

