LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DATAFLOW ANALYSIS 3

Christoph Reichenbach

Welcome back!

» No new homework this week
» Questions?

2/46

Monotonicity Revisited

» f is monotonic (wrt C) iff:
xEy = f(x) Ef(y)

» What does this tell us about f(f(x)) vs. f(x)?
» No direct connection to fixpoints!

3/46

Naive Iteration Revisited

Analysis on x =1 transp({ , })
7] x 77 if y ={x—1, }

transy((ing, outo, outy, outy)) =

trans;(S) =S

irlo,
transy(outo), transy({ Ve, 15
trans: (outy), -
trans,(outo Ll outy) ={ ;Y = ux}
| 1| transy,(1) transy(1) trans3 (1)
ing 1] L 1 1
outg || L | x—1 x+—1 x—1
out; || L | L x—1 x—1
outy || L | L x—ly—1l x—1ly—1

5/46

Naive Iteration Revisited

Analysis on x =1 transp({ , })
Z] xZ] if y ={x 1, }

transy((ing, outo, outy, outy)) =
irlo,

trans;(S) =S

transy(outo), transy({ Vy, 15
trans: (outy), -
trans;(outo LI out;) =1 ;Y P vk}
H | ‘ transt, (1) trans?;(1) transs,(1)
ing T T T T
outyg || T | x—1ly—T x—1ly—T x—1Ly—T
out; | T | T x—=1ly—T x—=1y—T
outy || T | T T x—1ly—1

5/46

Least Fixed Point vs MFP

T

MFP

Naive Iteration

MOP

6/46

Summary

> MFP

» Efficient

» Fixpoint 1 starting point
» Naive fixpoint iteration

» Fixpoint may be above or below starting point
» MOP

» One fixpoint, no “starting point”

» Maximal Precision

» Undecidable in general

» This list of fixpoint algorithms is not exhaustive
» Different fixpoint lattices per algorithm
» All fixpoints are sound overapproximations

7/46

Dimensions of Data Flow

» Data Flow analysis is highly versatile
» Scalable by adjusting:

» Lattice and transfer functions
» Treatment of subroutine calls
» Data representation

» Today we explore four dimensions of scalability:

» More precision: Control- and Path sensitivity
> More speed: Gen/Kill sets

> Infinite lattices: Widening

» Subroutines

8/46

Control Sensitivity

10/ 46

Control Sensitivity

AN
non-null null
/

control insensitive

10/ 46

Control Sensitivity

/N

T
non-null null
1

"hon-nu1) e
(@

s
(ron-min)

control insensitive

T (non-null [control sensitive]

10/46

Multiple Conditionals

b,
<%>if x == null |

true false
bl b2
y := new() y := null
X — null X +— non-null
y + non-null y —null

b.
<¥>if x == null |

Should we carry path information across merge points?

11/46

Path Sensitivity

proc f(a, b, c)

NTER

© -
Hh
(>3
Vi
o

2 paths
>

O
4 paths
1f c >
b

e

8 paths

Number of paths grows exponentially

12/ 46

Summary

» Control sensitive analysis considers conditionals:
» May propagate different information along different edges:
> if P:
> Special transfer function for ‘assert P’ on ‘true’ edge
> Special transfer function for ‘assert not P’ on 'false’ edge
» Path sensitive analysis considers one sequence of CFG
edges (execution path) at a time:
» May propagate different information along different paths
» High precision possible, but must cover all paths
> Number of paths O(# of conditionals)
> Avoid exponential blow-up by merging (as before)
» Path-sensitive procedure summaries might require exponential
number of cases
» Usually not practical

13/46

Product Lattices over Binary Lattices

» Recall binary lattices:
» T = true
» | = false
» LI = logical “or”
» M = logical “and”

true true true

» Computer hardware can compute LI, [of multiple
lattices in parallel:
> Bitwise or/and

— Highly efficient

» Can represent other lattices efficiently, too

false false false

Give rise to highly efficient Gen-/Kill-Set based program analysis

14 /46

Dataflow Analysis

Analyse properties of variables or basic blocks

Examples in practice:

» Live Variables
Is this variable ever read?

» Reaching Definitions
What are the possible values for this variable?

» Available Expressions
What variable definitely has which expression?

15/46

Analyses on Powersets (1/2)

=T
N
{1} {2} {3}
\ T ST join, = U
{1,2} {1,3} {2,3}
\ | /
{1,2,3} =

» Common: ‘Which elements of S are possible / necessary?’

» S C Z (Reaching Definitions)
> S = Numeric Constants in code U {0,1}
» S = Variables (Live Variables)
» S = Program Locations (alt. Reaching Definitions)
» S = Types
» Abstract Domain: Powerset P(S)
> Finite iff S is finite

16 /46

Analyses on Powersets (2/2)

0=T (1,23} =T
N P N
{1} {2} {3} {1.2} {13} {2,3}
\ TS ST /) > A\
{1.2} {13} {2,3} {1} {2} {3}
\ | / |
{1,2,3} = D=1
Joiny = U Joing =N

> join, can be U or N
> U

» Property that is true over any path

> May-analysis (e.g., Reaching Definitions)
>

» Property that is true over all paths

» Must-analysis
17/46

Gen-Sets and Kill-Sets

» Many transfer functions trans, have the following form:
» Remove set of options kill, , from each variable x
> Add set of options gen, , to each variable x
» Don't depend on other variables

transpy({x — A,...}) = {x — (A\ kill,) U gen, ,,,...}

» Bit-vector implementation:
» A\ B: bitwise-AND and bitwise-NOT
» AU B: bitwise-OR

» Examples:
» Reaching Definitions on finite domain

> gen: assignment to var in current basic block
> kill: other existing assignments to same var

> Live Variables

> gen: used variables
> kill: overwritten variables

18/46

Gen/Kill: Available Expressions

“Which expressions do we currently have evaluated and stored?”

C

int x = 3 + z;

int y = 2 + z;

if (z > 0) {
x = 4;

}

f(2 + z); // Can re-use y here!

» Forward analysis

» gen: any expression assigned to the variable
> kill: any other expression

> join, = N

19/46

Gen/Kill: Very Busy Expressions

“Which expression do we definitely need to evaluate at least once?”

C
// (x / 42) is very busy: (A),(B)
if (z > 0) {
x =4+ x/42; // (b
y=1;
} else {
x=x/ 42; // (B)
}
g(x);

» Backward analysis

» gen: any expression assigned to the variable
> kill: any other expression

> join, = N

20/46

Summary

» Common: Abstract Domain is powerset of some set S
» Transfer function transy:

transp({x — A,...}) = {x — (A\ kill,) U gen, ,,,...}

> kill: ‘Kill set": Entries of S to remove

» gen: ‘Gen set’: Entries of S to add

> joiny, is U or N

» Often admits very efficient implementation

May Must
Forward Reaching Definitions Available Expressions
Backward Live Variables Very Busy Expressions

21/46

Numerical Domains

Teal
// valid index range: [0, 2]
var a := [1, 2, 3];

22/46

Numerical Domains

Teal
var a := [1, 2, 3];
var i := 0;

var ri: [0,2] new arreyl[int](3);
while i < 3 {
var j := 0;
var ¢ : j: [0,2]
while j <3 =1 {

Out of bounds?

c :=c + ali + jl; » Guarantee: j <3 —
i+ j:[0,4] = j+i<3
) J =3 » Array access is safe!
result[i] := c: > Analysis must capture relations
. . between variables
i:=1i+1;
} > Octagon Abstract Domain

23/46

Numerical Domains

> Interval Abstract Domain
» Constraints: x € [miny, maxy|
» Octagon Abstract Domain

» Constraints: x +y < ¢
> (x, y variables, ¢ constant number)

» Polyhedra Abstract Domain
»Ci1xX1+ X0+ ...+ cpxn < Qo
> C1X1 + CoXo + ...+ ChXp = Co

» Increasingly powerful, increasingly expensive to analyse

24 /46

Interval Domain

- (o0,]
i
e |
Infinite height
/N

...[_3,_3][_2,--2][—1;—1] [0,0] 1,

» T = [—o00, 9]

> [,] U [k,] = [min(h, k), max(r, r.)]

1 2]

[2, 0]

[3’3]“

25 /46

Summary

> Numerical Abstract Domains capture linear relations between
variables and constants
> Interval Abstract Domain: x € [miny, maxy]
» Octagon Abstract Domain: +x +y < ¢
» Polyhedra Abstract Domain: Arbitrary linear relationships

> Infinite Domain height: No termination guarantee with our
current tools

26 /46

Applying the Interval Domain

‘z’ x :=0
x +— [0,0]
by —— |
while x < 3 |
x — [0,2] x — [1,3]
false e rx i=x + 1
x — [0,3]

b3
print(x)

28 /46

Applying the Interval Domain

b
@while x < 9000 pb———

false ‘P}(:= x +1

true

b3
print(x)

28 /46

Applying the Interval Domain

b
@while x < x+l p————

false .|x = x + 1

true :

» May not converge
b, » For loops that may take long to
print(x) converge: analysis is slow

28/46

Widening

by (ing)
while X < 9000 jf———

x — [1,1]
x—[1,2]
x— [1,3]
O
X 1= X + 1
true
» Inefficient: no reason to assume 2, 3, ... will help us converge

» Detection: when updating iny:

» Check if we have converged
» Otherwise, widen

R VA %1 < Vi=Ww
1vre = widen(v1 (| V2) = viF#wn

» For a suitable widen function

29/46

Widening Functions

» For convergence: satisfy Ascending Chain Condition on:
vir1 = widen(v;)

» Suitable functions for Interval Domain?
»wident(v) =T
> Very conservative
> Ensures convergence
> Widenloooo([/,r]) = [/ — 10000, r—+ 10000]
> No convergence: still allows infinite ascending chain
> wideni([/,r]) = [max({v € K|v < I}),min({v € K|v > r})]
> Ensures convergence iff IC is finite
> Must pick “good” K
» Common strategy:
K = {—00, 00} U all numeric literals in program
Our example: K = {—0,0,1,9000, 0o}

var x := 0;
while x < 9000 {
X :=x + 1;

} 30/46

Summary

» Widening allows us to use infinite domains £
» Use widen function
» widen must satisfy Ascending Chain Condition on £
> widen(L) generates finite lattice
» Widening operator V applies widen function iff needed
» Approach:
Before analysis runs: we design analysis on infintie-height
lattice
When analysis runs on concrete program:

widen constructs finite-height lattice specific to program
V applies widen on demand

> MFP: When updating: in;:=in;Vout;

31/46

Inter- vs. Intra-Procedural Analysis

» Intraprocedural: Within one procedure
» Data flow analysis so far
» Interprocedural: Across multiple procedures
» Type Analysis, especially. with polymorphic type inference

32/46

Limitations of Intra-Procedural Analysis

Teal-0 Teal-0
a = 7; fun f(x, y) = {
d := f(a, 2); z := 0;
e :=a + d; if x >y {
Z = X;
} else {
z = y;
+
return z;
+

How can we compute Reachable Definitions here?

33/46

A Naive Inter-Procedural Analysis

x = {7} f(x, y) =

inbg = out,, L outp, :Outbg

»out,,: e — {9, 14}

Works rather straightforwardly!

34/46

Inter-Procedural Data Flow Analysis

subroutine start

__»| ENTER

@?e = £(1, B[

(return) |

— EXIT

subroutine end

» Split call sites b, into call (bS) and return (b) nodes
» Intra-procedural edge bS __, bl carries environment/store
» Inter-procedural edge (—):
> Caller — subroutine, substitutes parameters (for
pass-by-value)
> Caller <= return, substitutes result (for pass-by-result)
» Otherwise as intra-procedural data flow edge

35/46

A Naive Inter-Procedural Analysis

x s {7} A

(bs) — y —{2}

e {1,2,5,7}

Imprecision!

36/46

Valid Paths

| return

(return] NoNmwalidafidthatither \

> [b57 ng b07 bla b37 b4’ bg]

| Context-sensitive interprocedural analyses consider only valid paths |

37/46

Summary

» Intraprocedural Data Flow Analysis is highly imprecise with
subroutine calls
» Interprocedural Data Flow Analysis is more precise:

» Split call site into call site + return site

» Add flow edges between call sites, subroutine entry

» Add flow edges between subroutine return, return site
» Carry environment from call site to return site

> Interprocedural analysis must typically consider the entire
program
= whole-program analysis

» Naive interprocedural analysis is call-site insensitive

» Merge all callers into one
» Analyses paths that are not valid = imprecision

38/46

Interprocedural Data Flow Analysis

x — {7} £, y) =
y — {2}

x— {1,7}
y—{2,5}

z—{1,2,5,7}

e {1,5,2,7}

Call-site insensitive: analysis merges all callers to £ ()

39/46

Interprocedural Data Flow Analysis

» Call-site insensitive
» Call-site sensitive

Via Inlining or AST cloning
Via Call Strings

40/46

Inlining

:= £(1, 5)

x — {1} — >

o 15}

Interprocedural Data Flow Analysis

» Call-site insensitive
» Call-site sensitive

Via Inlining
Via Call Strings

42/46

Call Strings of Length 1

f(x, y) =

X = {7[b6]}

@ y = {2[be]}

X = {7 HH{ Lo }
¥ = {20 {516, }

| return

L)

d— {2[b6]’ 7[b6]} Z = {1[1?7]7 5[b7]}|{2[b6]7 7[b5]}

e {1[b7]7 5[b7]}

43/46

Degrees of Call-Site Sensitivity

» We used call sites to make call sites explicit:
> [bﬁ] in 2[b6]
» Generalisation:

» Call Strings support deeper nesting
» Examples: [bo, bs], [b1, be]

Teal
fun g(y: int): int = { return y }
fun f(x: dint): dint = {

return g(x) // bes

+ g(B); // by
+
£(1); // bo
f(2); // b1

Must bound length of call strings to ensure termination |

44/ 46

Summary

» Strategies for call-site sensitive analysis
> Inlining
» Copy subroutine bodies for each caller
> Not usually efficient, unless part of compiler backend (which
has already decided to inline)
» Problematic with recursion

» Call Strings
» Call string length:

» Unbounded: Maximum precision, may not terminate with
recursion

» Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)

45 /46

Outlook

» No new homework this week
» Next Week: Heap Analysis

http://cs.1lth.se/EDAP15

46 / 46

http://cs.lth.se/EDAP15

