
EDAP15: Program Analysis
DATAFLOW ANALYSIS 3DATAFLOW ANALYSIS 3

Christoph Reichenbach



Welcome back!

▶ No new homework this week
▶ Questions?

2 / 46



Monotonicity Revisited

▶ f is monotonic (wrt ⊑) iff:

x ⊑ y =⇒ f (x) ⊑ f (y)

▶ What does this tell us about f (f (x)) vs. f (x)?
▶ No direct connection to fixpoints!

3 / 46



Naïve Iteration Revisited

x := 1
if y
x := 1
if y

b0

y := yy := y
b1

y := xy := x
b2

Analysis on
Z⊤

⊥ × Z⊤
⊥

trans0({x 7→ vx , y 7→ vy })
= {x 7→ 1, y 7→ vy }

trans1(S) = S

trans2({x 7→ vx, y 7→ vy })
= {x 7→ vx , y 7→ vx}

transall(⟨in0, out0, out1, out2⟩) =〈 in0,
trans0(out0),
trans1(out1),
trans2(out0 ⊔ out1)

〉

I trans1
all(I) trans2

all(I) trans3
all(I)

in0 ⊥ ⊥ ⊥ ⊥
out0 ⊥ x 7→ 1 x 7→ 1 x 7→ 1
out1 ⊥ ⊥ x 7→ 1 x 7→ 1
out2 ⊥ ⊥ x 7→ 1, y 7→ 1 x 7→ 1, y 7→ 1

I trans1
all(I) trans2

all(I) trans3
all(I)

in0

⊤ ⊤ ⊤ ⊤

out0

⊤ x 7→ 1, y 7→ ⊤ x 7→ 1, y 7→ ⊤ x 7→ 1, y 7→ ⊤

out1

⊤ ⊤ x 7→ 1, y 7→ ⊤ x 7→ 1, y 7→ ⊤

out2

⊤ ⊤ ⊤ x 7→ 1, y 7→ 1

5 / 46



Naïve Iteration Revisited

x := 1
if y
x := 1
if y

b0

y := yy := y
b1

y := xy := x
b2

Analysis on
Z⊤

⊥ × Z⊤
⊥

trans0({x 7→ vx , y 7→ vy })
= {x 7→ 1, y 7→ vy }

trans1(S) = S

trans2({x 7→ vx, y 7→ vy })
= {x 7→ vx , y 7→ vx}

transall(⟨in0, out0, out1, out2⟩) =〈 in0,
trans0(out0),
trans1(out1),
trans2(out0 ⊔ out1)

〉

I trans1
all(I) trans2

all(I) trans3
all(I)

in0 ⊥ ⊥ ⊥ ⊥
out0 ⊥ x 7→ 1 x 7→ 1 x 7→ 1
out1 ⊥ ⊥ x 7→ 1 x 7→ 1
out2 ⊥ ⊥ x 7→ 1, y 7→ 1 x 7→ 1, y 7→ 1

I trans1
all(I) trans2

all(I) trans3
all(I)

in0 ⊤ ⊤ ⊤ ⊤
out0 ⊤ x 7→ 1, y 7→ ⊤ x 7→ 1, y 7→ ⊤ x 7→ 1, y 7→ ⊤
out1 ⊤ ⊤ x 7→ 1, y 7→ ⊤ x 7→ 1, y 7→ ⊤
out2 ⊤ ⊤ ⊤ x 7→ 1, y 7→ 1

5 / 46



Least Fixed Point vs MFP

⊤

⊥

MFP

Naïve Iteration

MOP

6 / 46



Summary

▶ MFP
▶ Efficient
▶ Fixpoint ⊒ starting point

▶ Naïve fixpoint iteration
▶ Fixpoint may be above or below starting point

▶ MOP
▶ One fixpoint, no “starting point”
▶ Maximal Precision
▶ Undecidable in general

▶ This list of fixpoint algorithms is not exhaustive
▶ Different fixpoint lattices per algorithm
▶ All fixpoints are sound overapproximations

7 / 46



Dimensions of Data Flow

▶ Data Flow analysis is highly versatile
▶ Scalable by adjusting:

▶ Lattice and transfer functions
▶ Treatment of subroutine calls
▶ Data representation

▶ Today we explore four dimensions of scalability:
▶ More precision: Control- and Path sensitivity
▶ More speed: Gen/Kill sets
▶ Infinite lattices: Widening
▶ Subroutines

8 / 46



Control Sensitivity

⊤

⊥

nullnon-nullv := nullv := null
b0 v := new()v := new()

b1

if v == nullif v == null
b2

v := new()v := new()
b3 print vprint v

b4

v.f := 1v.f := 1
b5

true false

non-nullnull

⊤

⊤

⊤⊤

⊤non-null

⊤

control insensitive

non-nullnull

⊤

non-nullnull

non-nullnon-null

non-null

control sensitive

10 / 46



Control Sensitivity

⊤

⊥

nullnon-nullv := nullv := null
b0 v := new()v := new()

b1

if v == nullif v == null
b2

v := new()v := new()
b3 print vprint v

b4

v.f := 1v.f := 1
b5

true false

non-nullnull

⊤

⊤

⊤⊤

⊤non-null

⊤

control insensitive

non-nullnull

⊤

non-nullnull

non-nullnon-null

non-null

control sensitive

10 / 46



Control Sensitivity

⊤

⊥

nullnon-nullv := nullv := null
b0 v := new()v := new()

b1

if v == nullif v == null
b2

v := new()v := new()
b3 print vprint v

b4

v.f := 1v.f := 1
b5

true false

non-nullnull

⊤

⊤

⊤⊤

⊤non-null

⊤

control insensitive

non-nullnull

⊤

non-nullnull

non-nullnon-null

non-null

control sensitive

10 / 46



Multiple Conditionals
if x == nullif x == null

b0

y := new()y := new()
b1

y := nully := null
b2

if x == nullif x == null
b3

y.f := 1y.f := 1
b4

x.f := 1x.f := 1
b5

true false

x 7→ non-null
y 7→ null

x 7→ null
y 7→ non-null

true false

Should we carry path information across merge points?
11 / 46



Path Sensitivity

proc f(a, b, c)

ENTERENTER
b0

if a > 0if a > 0
b1

EXITEXIT
bX

2 paths
if b > 0if b > 0

b2

4 paths
if c > 0if c > 0

b3

8 paths

Number of paths grows exponentially

12 / 46



Summary

▶ Control sensitive analysis considers conditionals:
▶ May propagate different information along different edges:

▶ if P:
▶ Special transfer function for ‘assert P’ on ‘true’ edge
▶ Special transfer function for ‘assert not P’ on ‘false’ edge

▶ Path sensitive analysis considers one sequence of CFG
edges (execution path) at a time:
▶ May propagate different information along different paths
▶ High precision possible, but must cover all paths
▶ Number of paths O(# of conditionals)
▶ Avoid exponential blow-up by merging (as before)
▶ Path-sensitive procedure summaries might require exponential

number of cases
▶ Usually not practical

13 / 46



Product Lattices over Binary Lattices

true

false

×

true

false

× · · · ×

true

false

▶ Recall binary lattices:
▶ ⊤ = true
▶ ⊥ = false
▶ ⊔ = logical “or”
▶ ⊓ = logical “and”

▶ Computer hardware can compute ⊔, ⊓ of multiple
lattices in parallel:
▶ Bitwise or/and

=⇒ Highly efficient
▶ Can represent other lattices efficiently, too

Give rise to highly efficient Gen-/Kill-Set based program analysis

14 / 46



Dataflow Analysis

Analyse properties of variables or basic blocks

Examples in practice:
▶ Live Variables

Is this variable ever read?
▶ Reaching Definitions

What are the possible values for this variable?
▶ Available Expressions

What variable definitely has which expression?

15 / 46



Analyses on Powersets (1/2)
∅ = ⊤

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3} = ⊥

joinb = ∪

▶ Common: ‘Which elements of S are possible / necessary?’
▶ S ⊆ Z (Reaching Definitions)

▶ S = Numeric Constants in code ∪ {0, 1}
▶ S = Variables (Live Variables)
▶ S = Program Locations (alt. Reaching Definitions)
▶ S = Types

▶ Abstract Domain: Powerset P(S)
▶ Finite iff S is finite

16 / 46



Analyses on Powersets (2/2)
∅ = ⊤

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3} = ⊥

joinb = ∪

∅ = ⊥

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3} = ⊤

joinb = ∩
▶ joinb can be ∪ or ∩
▶ ∪:

▶ Property that is true over any path
▶ May-analysis (e.g., Reaching Definitions)

▶ ∩:
▶ Property that is true over all paths
▶ Must-analysis

17 / 46



Gen-Sets and Kill-Sets
▶ Many transfer functions transb have the following form:

▶ Remove set of options killx ,b from each variable x
▶ Add set of options genx ,b to each variable x
▶ Don’t depend on other variables

transb({x 7→ A, . . .}) = {x 7→ (A \ killx ,b) ∪ genx ,b, . . .}
▶ Bit-vector implementation:

▶ A \ B: bitwise-AND and bitwise-NOT
▶ A ∪ B: bitwise-OR

▶ Examples:
▶ Reaching Definitions on finite domain

▶ gen: assignment to var in current basic block
▶ kill : other existing assignments to same var

▶ Live Variables
▶ gen: used variables
▶ kill : overwritten variables

18 / 46



Gen/Kill: Available Expressions

“Which expressions do we currently have evaluated and stored?”

C
int x = 3 + z;
int y = 2 + z;
if (z > 0) {

x = 4;
}
f(2 + z); // Can re-use y here!

▶ Forward analysis
▶ gen: any expression assigned to the variable
▶ kill: any other expression
▶ joinb = ∩

19 / 46



Gen/Kill: Very Busy Expressions
“Which expression do we definitely need to evaluate at least once?”

C
// (x / 42) is very busy: (A),(B)
if (z > 0) {

x = 4 + x / 42; // (A)
y = 1;

} else {
x = x / 42; // (B)

}
g(x);

▶ Backward analysis
▶ gen: any expression assigned to the variable
▶ kill: any other expression
▶ joinb = ∩

20 / 46



Summary

▶ Common: Abstract Domain is powerset of some set S
▶ Transfer function transb:

transb({x 7→ A, . . .}) = {x 7→ (A \ killx ,b) ∪ genx ,b, . . .}

▶ kill : ‘Kill set’: Entries of S to remove
▶ gen: ‘Gen set’: Entries of S to add
▶ joinb is ∪ or ∩
▶ Often admits very efficient implementation

May Must
Forward Reaching Definitions Available Expressions
Backward Live Variables Very Busy Expressions

21 / 46



Numerical Domains

Teal
// valid index range: [0, 2]
var a := [1, 2, 3];
var i := 0;
var result = 0;
while i <= 3 {

result += a[i];
i := i + 1;

}

▶ Bug: i may be 3, and out of bounds for a
▶ Analysis: Compute bounding intervals [min, max]

▶ Interval Abstract Domain
▶ i : [0, 3]

22 / 46



Numerical Domains

Teal
var a := [1, 2, 3];
var i := 0;
var result = new array[int](3);
while i < 3 {

var j := 0;
var c := 0;
while j < 3 - i {

c := c + a[i + j];

j := j + 1;
}
result[i] := c;
i := i + 1;

}

▶ Guarantee: j < 3 − i
=⇒ j + i < 3

▶ Array access is safe!
▶ Analysis must capture relations

between variables
▶ Octagon Abstract Domain

i: [0, 2]

j: [0, 2]

i + j: [0, 4]

Out of bounds?

23 / 46



Numerical Domains

▶ Interval Abstract Domain
▶ Constraints: x ∈ [minx , maxx ]

▶ Octagon Abstract Domain
▶ Constraints: ±x ± y ≤ c
▶ (x , y variables, c constant number)

▶ Polyhedra Abstract Domain
▶ c1x1 + c2x2 + . . . + cnxn ≤ c0
▶ c1x1 + c2x2 + . . . + cnxn = c0

▶ Increasingly powerful, increasingly expensive to analyse

24 / 46



Interval Domain

⊥

. . .[−3, − 3][−2, − 2][−1, − 1] [0,0] [1,1] [2,2] [3,3] . . .

[−∞, ∞]

[−∞, −1]

[−∞, −2]

[1, ∞]

[2, ∞]

[0, 1]Infinite height

▶ ⊤ = [−∞, ∞]
▶ [l1, r1] ⊔ [l2, r2] = [min(l1, l2), max(r1, r2)]

25 / 46



Summary

▶ Numerical Abstract Domains capture linear relations between
variables and constants
▶ Interval Abstract Domain: x ∈ [minx , maxx ]
▶ Octagon Abstract Domain: ±x ± y ≤ c
▶ Polyhedra Abstract Domain: Arbitrary linear relationships

▶ Infinite Domain height: No termination guarantee with our
current tools

26 / 46



Applying the Interval Domain

x := 0x := 0
b0

while x < 3while x < 3
b1

x := x + 1x := x + 1
b2

print(x)print(x)
b3

truefalse

x 7→ [0,0]

x 7→ [0,2] x 7→ [1,3]

x 7→ [0,3]

▶ May not converge
▶ For loops that may take long to

converge: analysis is slow

28 / 46



Applying the Interval Domain

x := 0x := 0
b0

while x < 9000while x < 9000
b1

x := x + 1x := x + 1
b2

print(x)print(x)
b3

truefalse

x 7→ [0,0]

x 7→ [0,2] x 7→ [1,]

x 7→ [0,] ▶ May not converge
▶ For loops that may take long to

converge: analysis is slow

28 / 46



Applying the Interval Domain

x := 0x := 0
b0

while x < x+1while x < x+1
b1

x := x + 1x := x + 1
b2

print(x)print(x)
b3

truefalse

x 7→ [0,0]

x 7→ [0,2] x 7→ [1,]

x 7→ [0,]

▶ May not converge
▶ For loops that may take long to

converge: analysis is slow

28 / 46



Widening

while x < 9000while x < 9000
b1

x := x + 1x := x + 1
b2

true

x 7→ [1, 1]
x 7→ [1, 2]
x 7→ [1, 3]

. . .

in1

▶ Inefficient: no reason to assume 2, 3, . . . will help us converge
▶ Detection: when updating in1:

▶ Check if we have converged
▶ Otherwise, widen

v1∇v2 =
{

v1 ⇐⇒ v1 = v2
widen(v1 ⊔ v2) ⇐⇒ v1 ̸= v2

▶ For a suitable widen function
29 / 46



Widening Functions
▶ For convergence: satisfy Ascending Chain Condition on:

vi+1 = widen(vi)
▶ Suitable functions for Interval Domain?

▶ widen⊤(v) = ⊤
▶ Very conservative
▶ Ensures convergence

▶ widen10000([l ,r ]) = [l − 10000, r + 10000]
▶ No convergence: still allows infinite ascending chain

▶ widenK([l ,r ]) = [max({v ∈ K|v < l}),min({v ∈ K|v > r})]
▶ Ensures convergence iff K is finite
▶ Must pick “good” K
▶ Common strategy:

K = {−∞, ∞} ∪ all numeric literals in program
Our example: K = {−∞, 0, 1, 9000, ∞}

var x := 0;
while x < 9000 {

x := x + 1;
} 30 / 46



Summary

▶ Widening allows us to use infinite domains L
▶ Use widen function

▶ widen must satisfy Ascending Chain Condition on L
▶ widen(L) generates finite lattice

▶ Widening operator ∇ applies widen function iff needed
▶ Approach:

1 Before analysis runs: we design analysis on infintie-height
lattice

2 When analysis runs on concrete program:
3 widen constructs finite-height lattice specific to program
4 ∇ applies widen on demand

▶ MFP: When updating: ini:=ini∇outj

31 / 46



Inter- vs. Intra-Procedural Analysis

▶ Intraprocedural: Within one procedure
▶ Data flow analysis so far

▶ Interprocedural: Across multiple procedures
▶ Type Analysis, especially. with polymorphic type inference

32 / 46



Limitations of Intra-Procedural Analysis

Teal-0
a := 7;
d := f(a, 2);
e := a + d;

Teal-0
fun f(x, y) = {

z := 0;
if x > y {

z := x;
} else {

z := y;
}
return z;

}

How can we compute Reachable Definitions here?

33 / 46



A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

x 7→ {7}
y 7→ {2}

omitting ‘obvious’ transfer functions

(return)(return)
br

6

d 7→ {2, 7}

a 7→ {7} br
6

inbr
6

= outb6 ⊔ outb4 = outbr
6

▶ outb7 : e 7→ {9, 14}

Works rather straightforwardly!
34 / 46



Inter-Procedural Data Flow Analysis

e := f(1, 5)e := f(1, 5)
bc

x

(return)(return)
br

x

ENTERENTER
subroutine start

EXITEXIT
subroutine end

▶ Split call sites bx into call (bc
x ) and return (br

x) nodes
▶ Intra-procedural edge bc

x br
x carries environment/store

▶ Inter-procedural edge ( ):
▶ Caller subroutine, substitutes parameters (for

pass-by-value)
▶ Caller return, substitutes result (for pass-by-result)
▶ Otherwise as intra-procedural data flow edge

35 / 46



A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := f(1, 5)e := f(1, 5)
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

(return)(return)
br

6

(return)(return)
br

7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}
d 7→ {1, 2, 5, 7}

e 7→ {1, 2, 5, 7}

Imprecision!
36 / 46



Valid Paths

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

Not a valid pathNot a valid path either

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)(return)
br

6

(return)(return)
br

7

▶ [b5, bc
6 , b0, b1, b3, b4, br

6]

Context-sensitive interprocedural analyses consider only valid paths
37 / 46



Summary

▶ Intraprocedural Data Flow Analysis is highly imprecise with
subroutine calls

▶ Interprocedural Data Flow Analysis is more precise:
▶ Split call site into call site + return site
▶ Add flow edges between call sites, subroutine entry
▶ Add flow edges between subroutine return, return site
▶ Carry environment from call site to return site

▶ Interprocedural analysis must typically consider the entire
program
⇒ whole-program analysis

▶ Naïve interprocedural analysis is call-site insensitive
▶ Merge all callers into one
▶ Analyses paths that are not valid =⇒ imprecision

38 / 46



Interprocedural Data Flow Analysis

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}d 7→ {2, 7, 1, 5}

e 7→ {1, 5, 2, 7}

Call-site insensitive: analysis merges all callers to f()
39 / 46



Interprocedural Data Flow Analysis

▶ Call-site insensitive
▶ Call-site sensitive

1 Via Inlining or AST cloning
2 Via Call Strings

40 / 46



Inlining

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

z := 0

if ...

z := x z := y

return z

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

d 7→ {2, 7}

e 7→ {1, 5}

Clone subroutine IRs for each calling context
41 / 46



Interprocedural Data Flow Analysis

▶ Call-site insensitive
▶ Call-site sensitive

1 Via Inlining
2 Via Call Strings

42 / 46



Call Strings of Length 1

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7[b6]}
y 7→ {2[b6]}

x 7→ {1[b7]}
y 7→ {5[b7]}

x 7→ {7[b6]}|{1[b7]}
y 7→ {2[b6]}|{5[b7]}

z 7→ {1[b7], 5[b7]}|{2[b6], 7[b6]}d 7→ {2[b6], 7[b6]}

e 7→ {1[b7], 5[b7]}

43 / 46



Degrees of Call-Site Sensitivity
▶ We used call sites to make call sites explicit:

▶ [b6] in 2[b6]
▶ Generalisation:

▶ Call Strings support deeper nesting
▶ Examples: [b0, b6], [b1, b6]

Teal
fun g(y: int): int = { return y }
fun f(x: int): int = {

return g(x) // b6
+ g(5); // b7

}
...

f(1); // b0
f(2); // b1

Must bound length of call strings to ensure termination
44 / 46



Summary

▶ Strategies for call-site sensitive analysis
▶ Inlining

▶ Copy subroutine bodies for each caller
▶ Not usually efficient, unless part of compiler backend (which

has already decided to inline)
▶ Problematic with recursion

▶ Call Strings
▶ Call string length:

▶ Unbounded: Maximum precision, may not terminate with
recursion

▶ Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)

45 / 46



Outlook

▶ No new homework this week
▶ Next Week: Heap Analysis

http://cs.lth.se/EDAP15

46 / 46

http://cs.lth.se/EDAP15

