

EDAP15: Program Analysis

DATAFLOW ANALYSIS 3

Christoph Reichenbach

Welcome back!

- No new homework this week
- Questions?

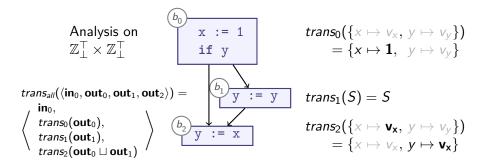
Monotonicity Revisited

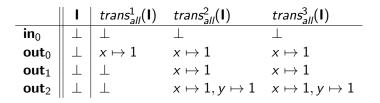
► f is monotonic (wrt \sqsubseteq) iff:

$$x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$$

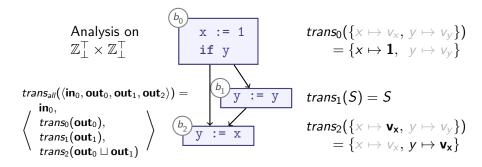
- What does this tell us about f(f(x)) vs. f(x)?
- No direct connection to fixpoints!

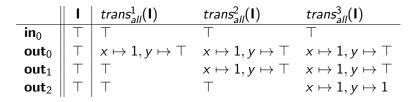
Naïve Iteration Revisited



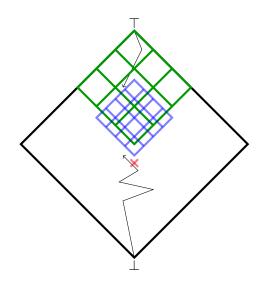


Naïve Iteration Revisited





Least Fixed Point vs MFP



MFP

Naïve Iteration

MOP

Summary

► MFP

- Efficient
- ▶ Fixpoint ☐ starting point

Naïve fixpoint iteration

Fixpoint may be above or below starting point

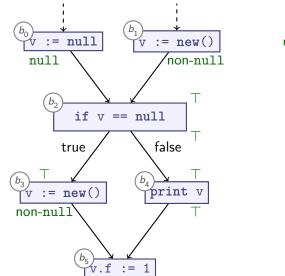
► MOP

- One fixpoint, no "starting point"
- Maximal Precision
- Undecidable in general
- This list of fixpoint algorithms is not exhaustive
- Different fixpoint lattices per algorithm
- All fixpoints are sound overapproximations

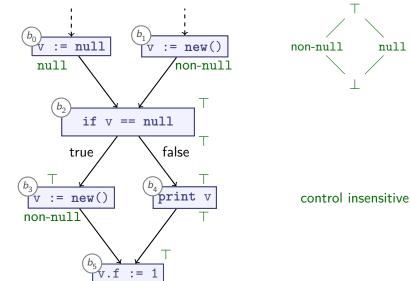
Dimensions of Data Flow

- Data Flow analysis is highly versatile
- Scalable by adjusting:
 - Lattice and transfer functions
 - Treatment of subroutine calls
 - Data representation
- Today we explore four dimensions of scalability:
 - More precision: Control- and Path sensitivity
 - More speed: Gen/Kill sets
 - Infinite lattices: Widening
 - Subroutines

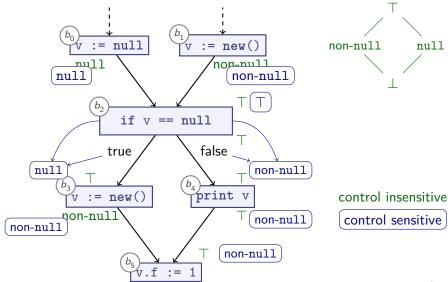
Control Sensitivity



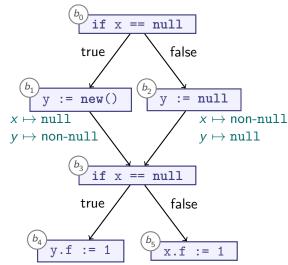
Control Sensitivity



Control Sensitivity

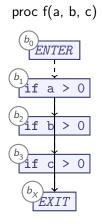


Multiple Conditionals



Should we carry path information across merge points?

Path Sensitivity



- 2 paths
- 4 paths

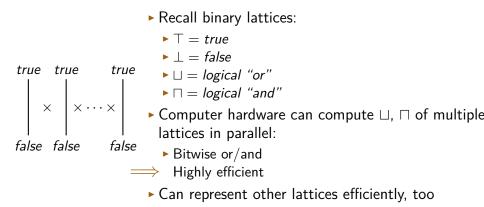
8 paths

Number of paths grows exponentially

Summary

- **Control sensitive** analysis considers conditionals:
 - ► May propagate different information along different edges:
 - ▶ if *P*:
 - Special transfer function for 'assert P' on 'true' edge
 - ▶ Special transfer function for 'assert not P' on 'false' edge
- Path sensitive analysis considers one sequence of CFG edges (execution path) at a time:
 - May propagate different information along different paths
 - ▶ High precision possible, but must cover *all* paths
 - Number of paths O(# of conditionals)
 - Avoid exponential blow-up by merging (as before)
 - Path-sensitive procedure summaries might require exponential number of cases
 - Usually not practical

Product Lattices over Binary Lattices



Give rise to highly efficient *Gen-/Kill-Set* based program analysis

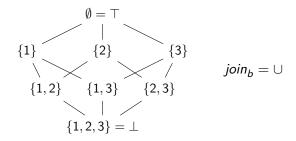
Dataflow Analysis

Analyse properties of variables or basic blocks

Examples in practice:

- Live Variables Is this variable ever read?
- Reaching Definitions What are the possible values for this variable?
- Available Expressions What variable definitely has which expression?

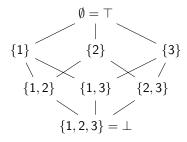
Analyses on Powersets (1/2)

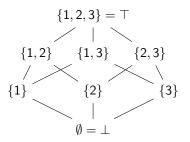


► Common: 'Which elements of *S* are possible / necessary?'

- $S \subseteq \mathbb{Z}$ (*Reaching Definitions*)
 - S =Numeric Constants in code $\cup \{0, 1\}$
- ► S = Variables (*Live Variables*)
- ► S = Program Locations (alt. Reaching Definitions)
- ► S = Types
- Abstract Domain: Powerset $\mathcal{P}(S)$
 - Finite iff S is finite

Analyses on Powersets (2/2)





- ▶ $join_b$ can be \cup or \cap
- ► U:
 - Property that is true over any path
 - May-analysis (e.g., Reaching Definitions)

▶ ∩:

- Property that is true over all paths
- Must-analysis

Gen-Sets and Kill-Sets

- ▶ Many transfer functions *trans*^b have the following form:
 - Remove set of options $kill_{x,b}$ from each variable x
 - Add set of options $gen_{x,b}$ to each variable x
 - Don't depend on other variables

 $trans_b(\{x \mapsto A, \ldots\}) = \{x \mapsto (A \setminus kill_{x,b}) \cup gen_{x,b}, \ldots\}$

- Bit-vector implementation:
 - $A \setminus B$: bitwise-AND and bitwise-NOT
 - $A \cup B$: bitwise-OR
- Examples:
 - Reaching Definitions on finite domain
 - ▶ gen: assignment to var in current basic block
 - kill: other existing assignments to same var
 - Live Variables
 - ▶ gen: used variables
 - kill: overwritten variables

Gen/Kill: Available Expressions

"Which expressions do we currently have evaluated and stored?"

C
int x = 3 + z;
int y = 2 + z;
if (z > 0) {
 x = 4;
}
f(2 + z); // Can re-use y here!

- Forward analysis
- ▶ gen: any expression assigned to the variable
- kill: any other expression
- ▶ join_b = \cap

Gen/Kill: Very Busy Expressions

"Which expression do we definitely need to evaluate at least once?"

```
C
// (x / 42) is very busy: (A),(B)
if (z > 0) {
    x = 4 + x / 42; // (A)
    y = 1;
} else {
    x = x / 42; // (B)
}
g(x);
```

- Backward analysis
- ▶ gen: any expression assigned to the variable
- kill: any other expression

▶ join_b =
$$\cap$$

Summary

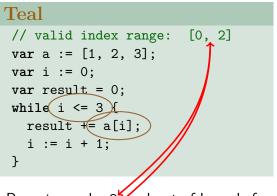
- Common: Abstract Domain is powerset of some set S
- Transfer function *trans_b*:

$$trans_b(\{x \mapsto A, \ldots\}) = \{x \mapsto (A \setminus kill_{x,b}) \cup gen_{x,b}, \ldots\}$$

- ▶ *kill*: 'Kill set': Entries of *S* to remove
- ▶ gen: 'Gen set': Entries of S to add
- ▶ $join_b$ is \cup or \cap
- Often admits very efficient implementation

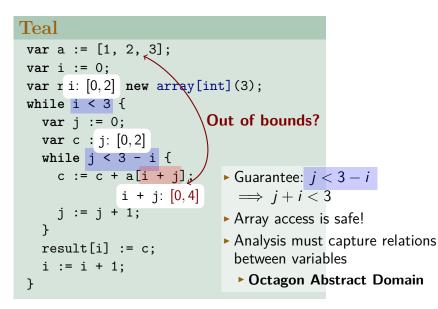
	Мау	Must
Forward	Reaching Definitions	Available Expressions
Backward	Live Variables	Very Busy Expressions

Numerical Domains



- Bug: i may be 3 and out of bounds for a
- Analysis: Compute bounding intervals [min, max]
 - Interval Abstract Domain
- ▶i:[0,3]

Numerical Domains



Numerical Domains

Interval Abstract Domain

• Constraints: $x \in [min_x, max_x]$

Octagon Abstract Domain

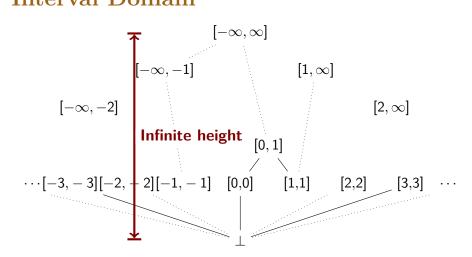
- Constraints: $\pm x \pm y \leq c$
- ► (x, y variables, c constant number)

Polyhedra Abstract Domain

- $\triangleright c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \leq c_0$
- $c_1x_1 + c_2x_2 + \ldots + c_nx_n = c_0$

Increasingly powerful, increasingly expensive to analyse

Interval Domain

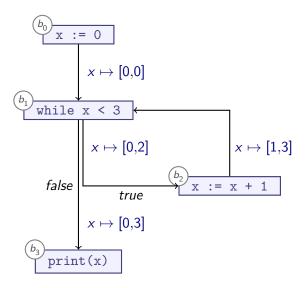


► $\top = [-\infty, \infty]$ ► $[l_1, r_1] \sqcup [l_2, r_2] = [min(l_1, l_2), max(r_1, r_2)]$

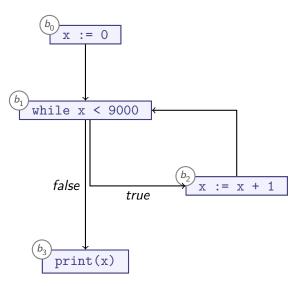
Summary

- Numerical Abstract Domains capture linear relations between variables and constants
 - ▶ Interval Abstract Domain: $x \in [min_x, max_x]$
 - Octagon Abstract Domain: $\pm x \pm y \leq c$
 - Polyhedra Abstract Domain: Arbitrary linear relationships
- Infinite Domain height: No termination guarantee with our current tools

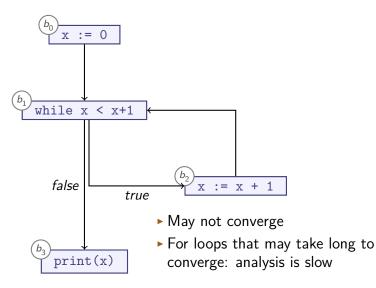
Applying the Interval Domain



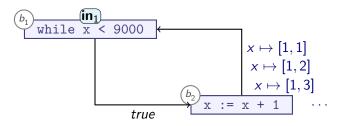
Applying the Interval Domain



Applying the Interval Domain



Widening



- ▶ Inefficient: no reason to assume 2, 3, ... will help us converge
- ▶ Detection: when updating **in**₁:
 - Check if we have converged
 - Otherwise, widen

$$v_1 \nabla v_2 = \begin{cases} v_1 & \iff v_1 = v_2 \\ \mathsf{widen}(v_1 \sqcup v_2) & \iff v_1 \neq v_2 \end{cases}$$

For a suitable widen function

Widening Functions

► For convergence: satisfy Ascending Chain Condition on:

 $v_{i+1} = widen(v_i)$

- Suitable functions for Interval Domain?
 - widen_{\top}(v) = \top
 - Very conservative
 - Ensures convergence
 - widen₁₀₀₀₀([l,r]) = [l 10000, r + 10000]
 - ► No convergence: still allows infinite ascending chain
 - $\blacktriangleright \mathsf{widen}_{\mathcal{K}}([l,r]) = [max(\{v \in \mathcal{K} | v < l\}), min(\{v \in \mathcal{K} | v > r\})]$
 - Ensures convergence iff \mathcal{K} is finite
 - ▶ Must pick "good" *K*
 - Common strategy:

 $\mathcal{K} = \{-\infty,\infty\} \cup \mathsf{all}$ numeric literals in program

Our example: $\mathcal{K} = \{-\infty, 0, 1, 9000, \infty\}$

```
var x := 0;
while x < 9000 {
    x := x + 1;
}
```

Summary

- \blacktriangleright Widening allows us to use infinite domains ${\cal L}$
- Use widen function
 - \blacktriangleright widen must satisfy Ascending Chain Condition on $\mathcal L$
 - widen(\mathcal{L}) generates finite lattice
- \blacktriangleright Widening operator ∇ applies widen function iff needed
- Approach:
 - Before analysis runs: we design analysis on infinite-height lattice
 - 2 When analysis runs on concrete program:
 - **3 widen** constructs finite-height lattice specific to program
 - 4 ∇ applies **widen** on demand
 - MFP: When updating: $in_i := in_i \nabla out_j$

Inter- vs. Intra-Procedural Analysis

- Intraprocedural: Within one procedure
 - Data flow analysis so far
- Interprocedural: Across multiple procedures
 - ► Type Analysis, especially. with polymorphic type inference

Limitations of Intra-Procedural Analysis

Teal-0

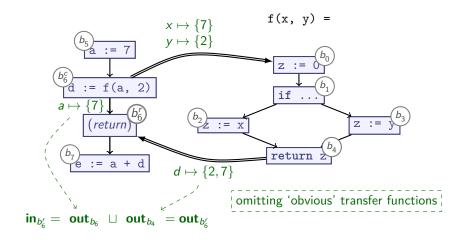
a := 7; d := f(a, 2); e := a + d;

Teal-0

```
fun f(x, y) = {
  z := 0;
  if x > y {
    z := x;
  } else {
    z := y;
  }
  return z;
}
```

How can we compute Reachable Definitions here?

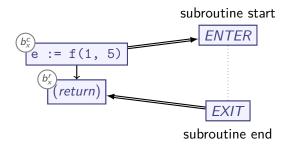
A Naïve Inter-Procedural Analysis



• out_{b_7} : $e \mapsto \{9, 14\}$

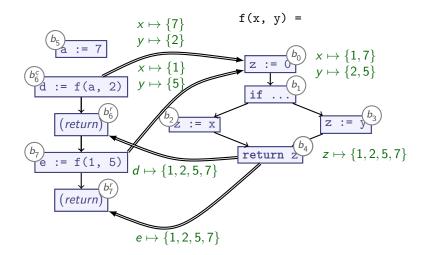
Works rather straightforwardly!

Inter-Procedural Data Flow Analysis



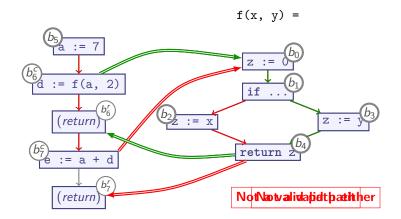
- Split call sites b_x into call (b_x^c) and return (b_x^r) nodes
- ▶ Intra-procedural edge $b_x^c \longrightarrow b_x^r$ carries environment/store
- ► Inter-procedural edge (→):
 - Caller
 subroutine, substitutes parameters (for pass-by-value)
 - Caller return, substitutes result (for pass-by-result)
 - Otherwise as intra-procedural data flow edge

A Naïve Inter-Procedural Analysis



Imprecision!

Valid Paths



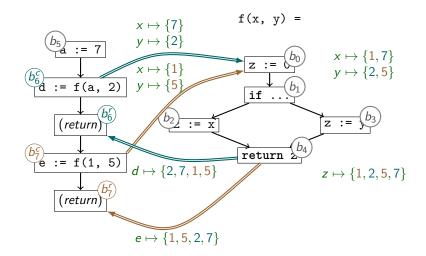
 \blacktriangleright [$b_5, b_6^c, b_0, b_1, b_3, b_4, b_6^r$]

Context-sensitive interprocedural analyses consider only valid paths

Summary

- Intraprocedural Data Flow Analysis is highly imprecise with subroutine calls
- Interprocedural Data Flow Analysis is more precise:
 - ▶ Split call site into call site + return site
 - ► Add flow edges between call sites, subroutine entry
 - Add flow edges between subroutine return, return site
 - Carry environment from call site to return site
- Interprocedural analysis must typically consider the entire program
 - \Rightarrow whole-program analysis
- Naïve interprocedural analysis is call-site insensitive
 - Merge all callers into one
 - \blacktriangleright Analyses paths that are not valid \implies imprecision

Interprocedural Data Flow Analysis

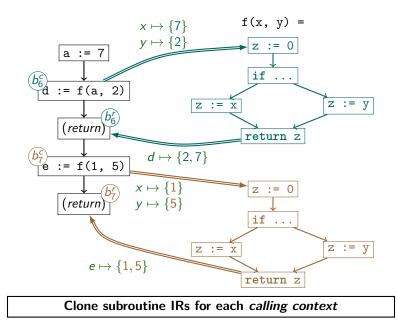


Call-site insensitive: analysis merges all callers to f()

Interprocedural Data Flow Analysis

- Call-site insensitive
- Call-site sensitive
 - 1 Via Inlining or AST cloning
 - 2 Via Call Strings

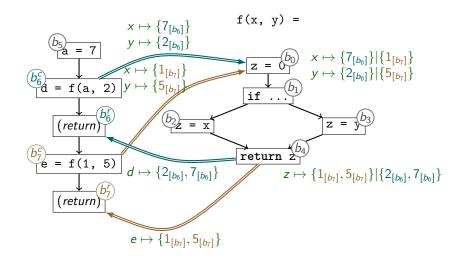
Inlining



Interprocedural Data Flow Analysis

- Call-site insensitive
- Call-site sensitive
 - 1 Via Inlining
 - 2 Via Call Strings

Call Strings of Length 1



Degrees of Call-Site Sensitivity

- We used call sites to make call sites explicit:
 - ▶ [*b*₆] in 2_[*b*₆]
- Generalisation:
 - Call Strings support deeper nesting
 - ▶ Examples: [*b*₀, *b*₆], [*b*₁, *b*₆]

Teal

Must bound length of call strings to ensure termination

Summary

- Strategies for call-site sensitive analysis
- Inlining
 - Copy subroutine bodies for each caller
 - Not usually efficient, unless part of compiler backend (which has already decided to inline)
 - Problematic with recursion

Call Strings

- Call string length:
 - Unbounded: Maximum precision, may not terminate with recursion
 - Bounded to length k: k degrees of call site sensitivity (speed/precision trade-off)

Outlook

- No new homework this week
- Next Week: Heap Analysis

http://cs.lth.se/EDAP15