

Data Flow Analysis on CFGs

- ▶ join_h: Join Function
- ▶ trans_b: Transfer Function
- ▶ in_b : knowledge at entrance of b

$$\mathsf{in}_{b_1} = \mathit{join}_{b_1}(\mathsf{out}_{b_2}, \dots, \mathsf{out}_{b_k})$$

▶ **out**_b: knowledge at exit of b

$$\mathsf{out}_{b_1} = \mathit{trans}_{b_1}(\mathsf{in}_{b_1})$$

- Forward Analysis shown here
- ► Backward Analysis: flip edge direction

Join and Transfer Functions

- ▶ L: Abstract Domain
 - ▶ Ordered by $(\sqsubseteq) \subseteq L \times L$

$$\top \in L$$
 for all $x : x \sqsubseteq \top$ Top element $\bot \in L$ for all $x : \bot \sqsubseteq x$ Bottom element (optional)

- ightharpoonup trans_h : L ightharpoonup L
 - monotonic
- ▶ $join_b: L \times ... \times L \rightarrow L$
 - pointwise monotonic

 $trans_b(x) \sqsubseteq trans_b(y)$

 $join_b(z_1,\ldots,z_k,x,\ldots,z_n) \subseteq join_b(z_1,\ldots,z_k,y,\ldots,z_n)$

Monotone Frameworks

Monotone Framework	Lattice
Abstract Domain	$L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup angle$
$join_b(x_1,\ldots,x_n)$	$x_1 \sqcup \ldots \sqcup x_n$
	$x \sqcap y$ (Not needed)
'Unknown' start value	<u> </u>
'Could be anything' end value	Т

- Monotone Frameworks (Killdall '77):
 - ► Lattice *L* of *finite height* (= satisfies Ascending Chain Condition)
 - ► Monotone trans_b
 - ▶ 'compatible' with semantics
- ⇒ Data flow analysis with Soundness and Termination
- ▶ Don't need \sqcap , so technically we only need a *Semilattice*.

Formalising our Naïve Algorithm

```
\begin{array}{lll} \textbf{out}_0 &=& \textit{trans}_0(\bot) \\ \textbf{out}_1 &=& \textit{trans}_1(\textbf{out}_0 \sqcup \textbf{out}_2) \\ \textbf{out}_2 &=& \textit{trans}_2(\textbf{out}_1) \\ \textbf{out}_3 &=& \textit{trans}_3(\textbf{out}_1) \end{array}
```

- ▶ Lattices \mathbf{out}_0 : L_0 , ..., \mathbf{out}_3 : L_3
- Can build lattice for entire program:
 - $L_{0...3} = L_0 \times L_1 \times L_2 \times L_3$
 - $L_{0...3} = \langle \bot_0, \bot_1, \bot_2, \bot_3 \rangle$
 - Monotone transfer function:

$$trans_{0...3}(\langle v_0, v_1, v_2, v_3 \rangle) = trans_0(v_0),$$

$$\langle trans_1(v_0 \sqcup v_2),$$

$$trans_2(v_1),$$

$$trans_3(v_1)$$

Reaching a Solution

- In general:
 - ▶ Program *P*:
 - ► "Program Lattice" *L*_P
 - $\blacktriangleright \perp_P$: initial analysis state
 - ▶ trans_P: Compute one step of naïve analysis
 - ▶ Repeat trans_P until solution fp_⊥:

$$fp_{\perp} = trans_P^n(\perp_P)$$

- ightharpoonup n is the minimum number of steps until we have a solution
- fp_{\perp} is Fixpoint of trans_P:

$$\mathit{fp}_{\perp} = \mathit{trans}_{P}(\mathit{fp}_{\perp})$$

► Fixpoint exists **iff** L_P satisfies Ascending Chain Condition

Cousot & Cousot (1979), based on Kleene (1952), based on Knaster & Tarski (1933)

Fixpoints

- ▶ Repeat *trans*_P until we reach a fixpoint
- Can start from any point a
- Multiple fixpoints possible
 - ► Each is a *sound* solution (for *compatible* transfer functions)
 - ► Form a lattice (Knaster-Tarski, 1933)
- ► Least Fixpoint: Highest Precision

Value Range Analysis

'Find value range (interval of possible values) for x'

```
Teal

x := 1;

while ... {

if ... {

x := 4

} else {

x := 7
}}
```

- ► Multiple possible *sound* solutions:
 - ▼
 - **▶** [-99, 99]
 - **[**1, 10]
 - **▶** [1, 7]
- All of these values are fixpoints
- ▶ [1,7] is least fixpoint

Summary

- Monotone Frameworks:
 - Combine:
 - Monotone transfer functions transb
 - ► Finite-Height Lattices

$$join_b(v_1,\ldots,v_k)=v_1\sqcup\ldots\sqcup v_k$$

- Guarantee:
 - ► Termination
 - Soundness
- With Monotone Frameworks, iterating trans_b and join_b produces Fixpoint (or Fixed Point)
 - ▶ Works from *any* starting point, possibly different fixpoint
 - ► Fixpoints form **Fixpoint Lattice**
 - ▶ Least Fixpoint (Bottom element) is most precise solution
- ► (Soundness only if *trans_b* are *compatible*)

An Algorithm for Fixpoints

- So far: naïve algorithm for computing fixpoint
 - ▶ Produces a fixpoint
 - ► Keeps iterating all trans_b / join_b functions, even if nothing changed
- Optimise processing with worklist
 - ► Set-like datastructure:
 - add element (if not already present)
 - **contains** test: is element present?
 - ▶ pop element: remove and return one element
 - ► Tracks what's left to be done
- ⇒ "MFP" (Minimal Fixed Point) Algorithm (Does not always produce least fixpoint!)

		trans _b		
b	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

Worklist

 $b_0 o b_1 \ b_0 o b_4 \ b_1 o b_2 \ b_1 o b_3 \ b_2 o b_4 \ b_3 o b_4 \ b_3 o b_4 \ b_3 o b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

Worklist $\begin{array}{c} b_0 \rightarrow b_1 \\ b_0 \rightarrow b_4 \\ b_1 \rightarrow b_2 \\ b_1 \rightarrow b_3 \\ b_2 \rightarrow b_4 \\ b_2 \rightarrow b_1 \\ b_3 \rightarrow b_4 \\ b_3 \rightarrow b_1 \end{array}$

		trans _b		
b	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
b_3	$\{b_1\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

Worklist $b_0 \rightarrow b_1$

 $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	Z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

Worklist $b_0 \rightarrow b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{aligned} \textit{join}_{b_j} \big(\langle v_{x_1}, v_{y_1}, v_{z_1} \rangle, \langle v_{x_2}, v_{y_2}, v_{z_2} \rangle \big) = \\ \langle v_{x_1} \cup v_{x_2}, v_{y_1} \cup v_{y_2}, v_{z_1} \cup v_{z_2} \rangle \end{aligned}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is out_o $\not \sqsubseteq$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o

Worklist

 $b_0 o b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$

 $b_1 \rightarrow b_3$

 $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$

 $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{aligned} \textit{join}_{b_{j}} \big(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle \big) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{aligned}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $egin{array}{l} b_0
ightarrow b_1 \ b_0
ightarrow b_4 \ b_1
ightarrow b_2 \ b_1
ightarrow b_3 \end{array}$

 $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$

 $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{c} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

For edge $b_o o b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist $b_0 \rightarrow b_1$

 $b_0 \rightarrow b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$

 $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$

 $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$

 $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

 $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \qquad \qquad \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\operatorname{out}_{o} \not \sqsubseteq \operatorname{in}_{i}$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

For edge $b_o o b_i$:

- ▶ Is $\operatorname{out}_o \not\sqsubseteq \operatorname{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0
ightarrow b_4 \ b_1
ightarrow b_2 \ \hline b_1
ightarrow b_3 \ b_2
ightarrow b_4 \ b_2
ightarrow b_1 \ b_3
ightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$

 $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x+1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$$

For edge $b_o o b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

$$b_0 \rightarrow b_4$$
 $b_1 \rightarrow b_2$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{aligned} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{aligned}$$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0
ightarrow b_4 \ b_1
ightarrow b_2$

 $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	x	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{l} \textit{join}_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \qquad \qquad \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

For edge $b_o o b_i$:

- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

$$b_0
ightarrow b_4 \ b_1
ightarrow b_2$$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
b	inputs	X	у	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

 $join_{b_{i}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle$

For edge $b_o \rightarrow b_i$:

- ▶ Is $\operatorname{out}_{o} \not \sqsubseteq \operatorname{in}_{i}$?
- Yes:
 - $ightharpoonup in_i := in_i \sqcup out_o$
 - Add all outgoing edges from b_o to worklist (if not already there)

$$b_0
ightarrow b_4 \ b_1
ightarrow b_2$$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
b_3	$\{b_1\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$join_{b_i}(\langle v_{x_1}, v_{y_1}, v_{z_1} \rangle, \langle v_{x_2}, v_{y_2}, v_{z_2} \rangle) = \langle v_{x_1} \cup v_{x_2}, v_{y_1} \cup v_{y_2}, v_{z_1} \cup v_{z_2} \rangle$$

For edge $b_o \rightarrow b_i$:

- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - ► Add all outgoing edges from b_o to worklist (if not already there)

$$b_0
ightarrow b_4 \ b_1
ightarrow b_2$$

$$b_2 \rightarrow b_4$$

 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{c} \textit{join}_{b_{j}}(\langle v_{x_{1}}, v_{y_{1}}, v_{z_{1}} \rangle, \langle v_{x_{2}}, v_{y_{2}}, v_{z_{2}} \rangle) = \\ \langle v_{x_{1}} \cup v_{x_{2}}, v_{y_{1}} \cup v_{y_{2}}, v_{z_{1}} \cup v_{z_{2}} \rangle \end{array}$$

▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?

Yes:

- $ightharpoonup in_i := in_i \sqcup out_o$
- Add all outgoing edges from be to worklist (if no Re-add previously

removed edge

Worklist

 $b_0
ightarrow b_4 \ b_1
ightarrow b_2$

 $b_2 \rightarrow b_4 \ b_2 \rightarrow b_1$

 $b_3 \rightarrow b_4$

 $\rightarrow b_1 \rightarrow b_3$

The MFP Algorithm

```
Procedure MFP(\bot, \Box, \subseteq, CFG, trans_-, is-backward):
begin
  if is-backward then reverse edges(CFG);
  worklist := edges(CFG); -- edges that we need to look at
  foreach n \in nodes(CFG) do
    in[n] := \bot; -- state of the analysis
  done
  while not empty(worklist) do
    \langle n, n' \rangle := pop(worklist); -- Edge <math>n \to n'
         -- OPTIONAL: cache out [n] = trans_n(in[n]) here
    if trans_n(in[n]) \not\sqsubseteq in[n'] then begin
       in[n'] := in[n'] \sqcup trans_n(in[n]);
       foreach n'' \in successor-nodes(CFG, n') do
         push(worklist, \langle n', n'' \rangle);
       done
    end
  done
  return in;
end
```

Summary: MFP Algorithm

- ▶ Product Lattice allows analysing multiple variables at once
- Compute data flow analysis:
 - ▶ Initialise all nodes with ⊥
 - ▶ Repeat until nothing changes any more:
 - ► Apply transfer function
 - ▶ Propagate changes along control flow graph
 - ► Apply ⊔
- Compute fixpoint
- ▶ Use worklist to increase efficiency
- Distinction: Forward/Backward analyses

MFP revisited

Consider Reaching Definitions again, with different lattice:

- ▶ All subsets of $\{\ell_0, \ldots, \ell_4\}$
- Finite height
- $ightharpoonup \sqcup = \cup$

MFP revisited: Transfer Functions

$$trans_{b_0} = [x \mapsto \{\ell_0\}, y \mapsto \{\ell_1\}, z \mapsto \{\ell_2\}]$$
 $trans_{b_1} = [x \mapsto \{\ell_3\}]$
 $trans_{b_2} = [y \mapsto \{\ell_4\}]$
 $trans_{b_3} = [z \mapsto y]$

MFP solution

$$\begin{array}{ccc} x & \mapsto & \{\ell_0, \ell_3\} \\ y & \mapsto & \{\ell_1, \ell_4\} \\ z & \mapsto & \{\ell_1, \ell_2, \ell_4\} \end{array}$$

- Least Fixpoint!
- ▶ Do we always get LFP from MFP?

▶ Lattice: \mathbb{Z}_{+}^{\top}

▶ Lattice: $\mathbb{Z}_{\perp}^{\top}$

▶ Lattice: $\mathbb{Z}_{\perp}^{\top}$

▶ Lattice:
$$\mathbb{Z}_{\perp}^{\top}$$

▶
$$1 \sqcup 3 = \top = 3 \sqcup 1$$

- ▶ Lattice: $\mathbb{Z}_{\perp}^{\top}$
 - $ightharpoonup 1 \sqcup 3 = \top = 3 \sqcup 1$
- ▶ MFP **does** compute the Least Fixpoint in our equations. . .
- ▶ . . . but the fixpoint is worse than expected!

Execution paths

▶ Idea: Let's consider all *paths* through the program:

$$\begin{array}{lll} path_{b_0} & = & \{[]\} \\ path_{b_1} & = & \{[b_0]\} \\ path_{b_2} & = & \{[b_0]\} \\ path_{b_3} & = & \{[b_0,b_1],[b_0,b_2]\} \end{array}$$

The MOP algorithm for Dataflow Analysis

- ► Compute the MOP ('meet-over-all-paths') solution:
 - ▶ Iterate over all paths $[p_0, \ldots, p_k]$ in $path_{b_i}$
 - ► Compute *precise* result for that path
 - ▶ Merge (i.e., join, □) with all other precise results

$$\mathbf{out}_{b_i} = \bigsqcup_{[p_0,...,p_k] \in \mathit{path}_{b_i}} \mathit{trans}_{b_i} \circ \mathit{trans}_{p_k} \circ \cdots \circ \mathit{trans}_{p_0}(\bot)$$

Notation: (function composition)

$$(f \circ g)(x) = f(g(x))$$

MOP vs MFP: Example

Transfer functions

Paths

```
\begin{array}{lll} & trans_{b_0} & = & id & path_{b_0} & = & \{[]\} \\ & trans_{b_1} & = & [x \mapsto 3][y \mapsto 1] & path_{b_1} & = & \{[b_0]\} \\ & trans_{b_2} & = & [x \mapsto 1][y \mapsto 3] & path_{b_2} & = & \{[b_0]\} \\ & trans_{b_3} & = & [z \mapsto x + y] & path_{b_3} & = & \{[b_0, b_1], [b_0, b_2]\} \\ & \textbf{out}_{b_3} & = & ([z \mapsto x + y][x \mapsto 3][y \mapsto 1](\bot)) \sqcup ([z \mapsto x + y][x \mapsto 1][y \mapsto 3](\bot)) \\ & = & \{z \mapsto 3 + 1, x \mapsto 3, y \mapsto 1\} \sqcup \{z \mapsto 1 + 3, x \mapsto 1, y \mapsto 3\} \\ & = & \{z \mapsto 4, x \mapsto \top, y \mapsto \top\} \end{array}
```

MOP vs MFP

	MOP	MFP
Soundness	sound	sound
Precision	maximal	sometimes lower
Decidability	undecidable	decidable

- ► MOP: Merge Over all Paths (Originally: "Meet Over all Paths", but we use the Join operator)
- ► MFP: Maximal Fixed Point

Summary

- \triangleright path_b: Set of all paths from program start to b
- ▶ MOP: alternative to MFP (theoretically)
 - ► Termination not guaranteed
 - May be more precise
 - ► Idea:
 - ▶ Enumerate all paths to basic block
 - Compute transfer functions over paths individually
 - ► Join

Why is MFP sometimes as good as MOP?

MFP vs the Least Fixpoint

- ▶ MFP is sometimes equal to MOP
- ► Challenge:

$$trans_b(x \sqcup y) \supset trans_b(x) \sqcup trans_b(y)$$

▶ join-before-transfer: overapproximate before we can reconcile!

Distributive Frameworks

A Monotone Framework is:

- ▶ Lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$
- ► L has finite height (Ascending Chain Condition)
- ▶ All *trans_b* are monotonic
- Guarantees a Fixpoint

A Distributive Framework is:

- A Monotone Framework, where additionally:
- ▶ trans_b distributes over \(\square\$:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

for all programs and all x, y, b

Guarantees that MFP gives same Fixpoint as MOP

Distributive Problems

Monotonic:

$$trans_b(x \sqcup y) \supseteq trans_b(x) \sqcup trans_b(y)$$

Distributive:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

- Many analyses fit distributive framework
- ▶ Known *counter-example*: transfer functions on $\mathbb{Z}_{\perp}^{\top}$:
 - $\triangleright [z \mapsto x + y]$
 - ► Generally:
 - ▶ depends on ≥ 2 independent inputs
 - ▶ can produce same output for different inputs

Summary

▶ **Distributive Frameworks** are *Monotone Frameworks* with additional property:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

for all programs and all x, y, b

- ▶ In Distributive Frameworks, MFP produces same least Fixpoint as for MOP
- Some analyses (Gen/Kill analyses, discussed later) are always distributive