LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DATAFLOW ANALYSIS 2

Christoph Reichenbach

Data Flow Analysis on CFGs

> join,: Join Function
» transy: Transfer Function
> iny: knowledge at entrance of b

iny, = join, (outy,, ... outy,)
» out,: knowledge at exit of b

outy,, = trans, (inp,)

» Forward Analysis shown here
» Backward Analysis: flip edge direction

2/27

Join and Transfer Functions

» [: Abstract Domain

> Ordered by (C) C L x L
Tel forall x: xC T Top element
L el forall x: 1L Cx Bottom element (optional)

»trans, : L — L x C y
» monotonic 4
cjoimg i Lx .. oxL— L el Eotrans(y)
» pointwise monotonic x C vy
3
Jjoing(z1, ... zk, Xy ..y zy) E joing(zy, ..., Zk, Y,

3/21

Monotone Frameworks

Monotone Framework Lattice
Abstract Domain L= (L,C,m,L)
Joiny(x1, ..., xn) x1U...Uxp,

x My (Not needed)
‘Unknown’ start value il
‘Could be anything’ end value T

» Monotone Frameworks (Killdall '77):

» Lattice L of finite height
(= satisfies Ascending Chain Condition)
» Monotone trans
> ‘compatible’ with semantics

—> Data flow analysis with Soundness and Termination

» Don't need 17, so technically we only need a Semilattice.

427

Formalising our Naive Algorithm

outy
outy
out,
outs

» Lattices outg : Lo, ..

transp(L)
trans; (outg L outy)
transy(
transz(out;)

., outs : L3

» Can build lattice for entire program:
> Lo”_3 = Lo X L1 X L2 X L3
> Lo.3=(lo, L1, 12, 13)
» Monotone transfer function:

transy..3({vo, vi, v2, v3)) =
transy Vo) ,
trans;

(

(

(Vo LJ Vz),
trans2(v1),

(

transz(vi)

5/27

Reaching a Solution

> In general:
» Program P:

> “Program Lattice” Lp
> | p: initial analysis state
> transp: Compute one step of naive analysis

» Repeat transp until solution fp :

fp, = transp(Lp)
» n is the minimum number of steps until we have a solution
» fp, is Fixpoint of transp:
fp, = transp(fp,)

» Fixpoint exists iff Lp satisfies Ascending Chain Condition

Cousot & Cousot (1979), based on Kleene (1952), based on Knaster & Tarski (1933)

6/27

Fixpoints

» Repeat transp until we reach a fixpoint
» Can start from any point a
» Multiple fixpoints possible
» Each is a sound solution
(for compatible transfer functions)

» Form a lattice
(Knaster-Tarski, 1933)

» Least Fixpoint: Highest Precision

7/21

Value Range Analysis

‘Find value range (interval of possible values) for x'

Teal » Multiple possible sound solutions:
X := 1; > T
while ... { >[99, 99]
if ... o > [1,10]
x = 4 > [1,7]
}else { » All of these values are fixpoints
x :=7

} 3 > [1,7] is least fixpoint

8/27

Summary

» Monotone Frameworks:
» Combine:

» Monotone transfer functions trans
> Finite-Height Lattices

Joing(va, ... vk) =vi U v

» Guarantee:
» Termination
> Soundness
» With Monotone Frameworks, iterating trans, and join,
produces Fixpoint (or Fixed Point)
» Works from any starting point, possibly different fixpoint
> Fixpoints form Fixpoint Lattice
> Least Fixpoint (Bottom element) is most precise solution

» (Soundness only if trans, are compatible)

9/27

An Algorithm for Fixpoints

» So far: naive algorithm for computing fixpoint
» Produces a fixpoint
» Keeps iterating all transy, / join, functions, even if nothing
changed

» Optimise processing with worklist
» Set-like datastructure:
> add element (if not already present)
> contains test: is element present?
> pop element: remove and return one element
» Tracks what'’s left to be done
= “MFP" (Minimal Fixed Point) Algorithm
(Does not always produce least fixpoint!)

10/27

MFP Example:

@

return [x, y, z]

trans,
b inputs X y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} x vy
b4 {b07b27b3} X y 4
jOinbf(<VX1v %% V21>7 <VX27 Vyas V22>) =

(Vi U Vi, iy U vy vy U vy)

Worklist

bo — b1

bg — by

by — by

b1 — b3

by — by

by — b1

b3 — by

bz — b1

12/27

MFP Example:

@

return [x, y, z]

trans,
b inputs X y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} x vy
b4 {b07b27b3} X y 4
jOinbf(<VX1v %% V21>7 <VX27 Vyas V22>) =

(Vi U Vi, iy U vy vy U vy)

Worklist

[bg — b

bg — by

by — by

b1 — b3

by — by

by — b1

b3 — by

bz — b1

12/27

MFP Example:

(

0}, {1})

y 4

{0}, {

@

return [x, y, z]

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} vy
by {b07b27 b3} X Yy | Z
jOinbf(<VX13 %% V21>7 <VX27 Vyas V22>) =

(Vi U Vi, iy U vy vy U vy)

Worklist

For edge b, — b;: by — b1l

bg — by

b1 — bz

b1 — b3

by — by

by — b1

b3 — by

bz — b1

12/27

MFP Example:

transy,
b inputs X ‘ y ‘ z
2 bo 0 0 0]1
= o= 1l by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
(RO {1}] b (b} vy
X KK by | {bo, b2, b3} | x y |z
L7 J0i, (Vg Vs V), (Vi Vi, Vi) =
- <VX1 U Vg, Wy U vy, vy U V12>
Worklist
For edge b, — b;: by — b1l
> |Is out, IZ in;? 2(1) : Z;
b1 — b3
by — by
b, — by
Eva
b, b3 — by
return [x, y, z]

12/27

MFP Example:

({0}, {0}, {1}))

y

\
(LU {0},{0}, {1}))

h/

@

return [x, y, z]

transp,

b inputs X ‘ y ‘ z

bo 0 0 01

by {bo,bz,bg,} x+1|y|z

by {b1} X 7|z

bs {b1} vy

by {b07 by, b3} X Yy | Z

jOinbf(<VX13 %% V21>7 <VX27 Vyas V22>) =

(Vi U Vi, iy U vy vy U vy)
Worklist
For edge b, — b;: by — b1l
> |Is out, IZ in;? 2(1) : Z‘;
> Yes: by — b3
> in; :=in; Llout, by — by
by — b1
b3 — by
bz — b1

12/27

MFP Example:

(

transy
b inputs X ‘ y ‘ z
bg 0 0 011
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
bs {b1} vy
by | {bo, ba, b3} | x vy |z

jOinbi(<VX13 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

@

return [x,

y, zJ

For edge b, — b;:

> |Is out, IZ in;?

> Yes:

> in,- =
> Add all outgoing edges
from b, to worklist
(if not already there)

in; L out,

Worklist
[bg — b
by — by
by — by
b1 — b3
by — by
b, — by
b3 — by
b3 — by

12/27

MFP Example:

(

return [x, y, z]

N v
?

transy
b inputs X y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} x vy
by {b07 by, b3} X Yy | Z
jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vi U Vi, iy U vy vy U vy)
Worklist
For edge b, — b;: bo—rt7
b,
> |Is out, IZ in;? 2(1) : b;
> Yes: by — b3
> in; :=in; Llout, by — by
> Add all outgoing edges by = by
from b, to worklist by — by
b3 — b1

(if not already there)

12/27

MFP Example:

{0}, {

0},{12@

y

@

return [x, y, z]

transy
b inputs y |z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} vy
by {b07 by, b3} X Yy | Z
jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vi U Vi, iy U vy vy U vy)
Worklist
For edge b, — b;:
b,
> |Is out, IZ in;? 2(1) : b;
> Yes: by — b3
> in; :=in; Llout, by — by
> Add all outgoing edges by = by
from b, to worklist by — by
b3 — b1

(if not already there)

12/27

MFP Example:

transy,
b inputs X ‘ y ‘ z
bg 0 0 011
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
(b3 {b1} vy
by | {bo, ba, b3} | x vy |z

jOinbi(<VX13 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

1. {0 " Worklist
(1134 C? } For edge b, — b;:
. bO — b4
> |Is out, IZ in;? by — b
Lu <{1} {0} 1)) | ves
> in; :=in; Ll out, by — by
> Add all outgoing edges by = by
[] / from b, to worklist by = by
b, (if not already there) bs = by
return [x, y, z]

12/27

MFP Example:

transy,
b inputs X |y |
bo 0 0 0

L o by | {o, ba, b3} | X +1
by {b1} X

Yy
(03,00} (1)) R (Y R E
y

by | {bo, bo, b3} |
@ {0} {0}, {1})

(

NI [N|N|H|IN

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

({1 0 1}) Worklist
{}{}{} For edge b, — b;:

> |Is out, IZ in;? 2(1) : z‘;

<{1} CREDR b

> in; :=in; Llout, by — by

> Add all outgoing edges by = by

(} / from b, to worklist by = by

b, (if not already there) bs = by

return [x, y, z]

12/27

MFP Example:

{0}, {

0},{12@

y

@

return [x, y, z]

transy
b inputs X ‘ y ‘ z
bg 0 0 011
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
bs {b1} vy
by | {bo, ba, b3} | x vy |z

jo"nbi(<vx17 Virs Va)5 (Vi Vias

V) =

(Vi U Vi, iy U vy vy U vy)

For edge b, — b;:

> |Is out, IZ in;?
> Yes:

> in; :=in; Uout,

> Add all outgoing edges
from b, to worklist
(if not already there)

Worklist

bg — by
b1—>b2

by — by
by — b1
b3—)b4
b3—)b1

12/27

MFP Example:

(

L/

{0}, {0})

@

return [x,

,

Z

transy
b inputs X y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
b3 {b1} X vy |y
b4 {b07b27b3} X y z
jOinbi(<VX13 %% V21>7 <VX27 Vyas V22>) =

(Vi U Vi, iy U vy vy U vy)

For edge b, — b;:

> |Is out, IZ in;?

> Yes:

> in,- =
> Add all outgoing edges
from b, to worklist
(if not already there)

in; L out,

Worklist

bg — by
b1—>b2

by — by
b, — by
b3—)b4
bs — by

12/27

MFP Example:

(

({1}.{0}, (1))

@

return [x, y, z]

transy
b inputs X ‘ y ‘ z
bg 0 0 011
by | {bo,bo,b3} | x+1 |y |z
by {b1} X 7|z
bs {b1} vy
by | {bo, ba, b3} | x vy |z

joinbl,(<vx1, Virs Va)5 (Vi Vias

V) =

(Vi U Vi, iy U vy vy U vy)

For edge b, — b;:

> |Is out, IZ in;?

> Yes:

> in; :=in; Uout,

> Add all outgoing edges
from b, to worklist
(if not already there)

Worklist

bg — by
b1—>b2

by — by
b, — by
b3—)b4
[bz — b

12/27

MFP Example:

transy

b inputs X ‘ y ‘ z

bo 0 0 01

by {bo,bz,bg,} x+1|y|z

by {b1} X 7|z

(bs {b1} x vy

b4 {b07 b27 b3} X y z

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vi U Vi, iy U vy vy U vy)
0 1 Worklist
{ } { } For edge b, — b;:
. bO — b4
> |Is out, IZ in;?
‘ by — b
{1} {O} {1} > Yes: ' i
> Add all outgoing edges 1
{1} {0} {0} from b, to worklist by — ba
b, (if not already there) bs — b
return [x, y, z]

12/27

MFP Example:

transy,
b inputs X ‘ y ‘ z
bo 0 0 0|1
: by | {bo, b2, b3} | x+1 |y |z
: by {b1} X 7]z
({0}, {0}, {1})] b | {b) vy
X y z by | {bo, ba, b3} | x y |z

\
({0,1},{0},{1})

jOinbi(<VX17 %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist

For edge b, — b;:
b
> |Is out, IZ in;? 2(1) : b;

> Yes:

> in; :=in; Ll out, by — by
> Add all outgoing edges by = by
from b, to worklist bs — 4
(if not already there) (a0

b,
return [x, y, z]

MFP Example:

{0}, {0}, {1})

y
\
({0,1}, {0}, {1})]

(

({1}, {0}, {0})

@

return [x, y, z]

transy
b inputs ‘ y ‘
bo 0 0 0

by | {bo, bo, b3} | x+1

by {b1} X

b {b1}

NI [N|N|H|IN

X
b4 {b07b27b3} X

jo"nb,-(<VX1v %% V21>7 <VX27 Vyas V22>) =
(Vg U Vags iy U vy vz U V)

Worklist

For edge b, — b;:

> |Is out, IZ in;?

> Yes:
> in; :=in; Uout,
> Add all outgoing edges
from i

(if n Re-add previously

removed edge

bg — by
by — by

by — by
b, — by
b3—)b4

— by — b3

12/27

The MFP Algorithm

Procedure MFP(Ll, U, T, CFG, trans_, is-backward):

begin
if is-backward then reverse edges(CFG);
worklist := edges(CFG); -- edges that we need to look at
foreach n € nodes(CFG) do
inln] := 1; -- state of the analysis
done
while not empty(worklist) do
(n,n")y := pop(worklist); -- Edge n— n’

-- OPTIONAL: cache out[n] = trans,(in[n]) here
if trans,(inl[n]) Z in[n'] then begin
in[n’] := inln’] U trans,(inln]l);
foreach n’ € successor-nodes(CFG, n’) do
push(worklist, (n’,n"”));
done
end
done
return in;
end

Worklist allows focussing effort! 13/27

Summary: MFP Algorithm

» Product Lattice allows analysing multiple variables at once
» Compute data flow analysis:

> Initialise all nodes with L
» Repeat until nothing changes any more:

> Apply transfer function
> Propagate changes along control flow graph
> Apply U

» Compute fixpoint
» Use worklist to increase efficiency
» Distinction: Forward/Backward analyses

14 /27

MFP revisited

Consider Reaching Definitions again, with different lattice:

T = {507£17€27€37£4}

’ ! ~

, ~
’ ~

{EOaél} 'i‘ {63,64}

(o} {0} {6} {6} {ta)
NN
1=0

b2
Qy - 72 Y > All subsets of {{g, ..., 04}

- / » Finite height
S‘Dreturn [x,

y, z] »U=U

15/27

MFP revisited: Transfer Functions

b,
return [x,

y, z]

transp, =[x +— {l},
y = {l}
z = {6}]
transy, =[x — {{3}]
transp, =[y — {{4}]
transp, =[z — y]

MFP solution

X {60763}
y = {Elaéll}
Z {£1,€2,€4}

» Least Fixpoint!

» Do we always get LFP from MFP?

16/27

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
y = 1] v 1

[[x:3,y:1,z:J_]]

transp, = [z — x + y]

> Lattice: Z]

1827

Another Example

transp, = [x+ 1,
y— 3

transp, = [z — x + y]

> Lattice: Z]

1827

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
yHl] 7
[[x:3,y:1,z : J_]]

[x:3,y:1,z: 1]
z :=u(+ y | transy, = [z x+7]
[x:3,y:1,z:4]

> Lattice: Z]

1827

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
y—1] v =1 SN
[[x:3,y:1,z:J_]] : 13,z 1]

[x:3,y:1,z: 1]
zZ =X + y |transy, =[z—x+7]
[x:3,y:1,z:4]

> Lattice: Z]
»1U3=T=3U1

18 /27

Another Example

transp, = [x+> 3, transy, = [x+— 1,
y—1] v =1 v =3 y 3]
[[x:?;,y:l,z:J_]j [[x:l,y:?;,z:J_]]

AN /

[X:T,y:T,z:J_]]
z :=u(+y |transb3:[z»—>x+y]
[[x:T,y:T,z:T]J

> Lattice: Z]
»1U3=T=3U1
» MFP does compute the Least Fixpoint in our equations. ..
> ... but the fixpoint is worse than expected! 1821

Execution paths

> |dea: Let's consider all paths through the program:

pathy,
pathy,
path,,
path,,

{0

{[bo]}

{[bo]}

{[bo, bu], [bo, ba]}

19/27

The MOP algorithm for Dataflow
Analysis

» Compute the MOP (‘meet-over-all-paths’) solution:
> Iterate over all paths [po, ..., pk] in pathy,
» Compute precise result for that path
> Merge (i.e., join, LJ) with all other precise results
outy,, = L] transp, o transp, o - o transp (L)
[po,...,pk]epathbi

Notation: (function composition)

(fog)(x) = fg(x)

20/27

MOP vs MFP: Example

z =X +y
Transfer functions Paths
trans,, = id path, = {[]}
transp, = [x+— 3]y — 1] path, = {[bo]}
transp, = [x+— 1][y— 3] path,, = {[bo]}
transp, = [z x+Y] path, = {[bo, b1], [bo, bo]}

([z = x + yllx = 3]y = 1J(L)) U ([z = x + y][x = 1][y = 3](L))
{z—34+1,x—=3y—~1}U{z—14+3,x— 1y~ 3}
{z—4,x— T, y—=T}

outy,

21/27

MOP vs MFP

| ™oP | MFP
Soundness sound sound
Precision maximal sometimes lower

Decidability || undecidable decidable

» MOP: Merge Over all Paths

(Originally: “Meet Over all Paths”, but we use the Join operator)
> MFP: Maximal Fixed Point

22/27

Summary

» path,: Set of all paths from program start to b
» MOP: alternative to MFP (theoretically)

» Termination not guaranteed

» May be more precise

> |dea:
» Enumerate all paths to basic block
» Compute transfer functions over paths individually
> Join

Why is MFP sometimes as good as MOP?

23/27

MFP vs the Least Fixpoint

transy, = [x+— 3, X :=3 X = 1 |transp, =[x> 1,

y =1 v o= 1 = = 3 v 3]
[[x:3,y:1,z:L]j ﬁ:l,y:&z:L]}
AN /

[x:T,y:T,z:J_]j
Z ;=u{ +y |transb3:[zr—>x+y]
[[X:T,y:T,z:T]J

» MFP is sometimes equal to MOP
» Challenge:

trans,(x U y) O transp(x) L transy(y)

» join-before-transfer: overapproximate before we can reconcile!

24 /27

Distributive Frameworks

A Monotone Framework is:
» Lattice L = (£,C, M, L)
» L has finite height (Ascending Chain Condition)
» All trans, are monotonic

» Guarantees a Fixpoint

A Distributive Framework is:

> A Monotone Framework, where additionally:
» trans, distributes over LI:

transy(x L y) = trans,(x) U transy(y)

for all programs and all x, y, b
» Guarantees that MFP gives same Fixpoint as MOP

25/27

Distributive Problems

» Monotonic:

transy(x Ll y) 3 transy(x) L transp(y)
» Distributive:

transy(x U y) = trans,(x) U transy(y)

» Many analyses fit distributive framework
» Known counter-example: transfer functions on Z :

> [z = x +y]
» Generally:

> depends on > 2 independent inputs
» can produce same output for different inputs

26/27

Summary

» Distributive Frameworks are Monotone Frameworks with
additional property:

transy(x L y) = trans,(x) U transy(y)

for all programs and all x, y, b

> In Distributive Frameworks, MFP produces same least
Fixpoint as for MOP

» Some analyses (Gen/Kill analyses, discussed later) are always
distributive

27 /27

