

EDAP15: Program Analysis

DATA FLOW ANALYSIS 1

Christoph Reichenbach

Announcements

- Registered for lab slots?
- Exercises start on Friday
- Homework 1 out on Thursday, deadline extended by 1 day

A New Analysis Challenge

```
Teal
var x := [0, 0];
print(x); // A
if z {
    x[0] := 2; // B
    x := null;
}
x[0] := 1; // C
```

- ► Analyse: Can there be a *failure* at B or C?
- ► Must distinguish between x at A vs. x at B and C
- Need to model flow of information: Flow-Sensitive Analysis
- Type analysis is not Flow-Sensitive (normally)

Need analysis that can represent data flow through program

Evaluation Order

Teal-0

```
fun p(a) = { print(a); return 1; }
p(p(0) + p(1));
```

Teal-0 with explicit order

```
var tmp1 := p(0);
var tmp2 := p(1);
var tmp3 := tmp1 + tmp2;
var tmp4 := p(tmp3);
```

Java or C or C++

// Many challenging constructions: a[i++] = b[i > 10 ? i-- : i++] + c[f(i++, --i)];

Every analysis must remember the evaluation order rules!

Eliminating Nested Expressions

- No nested expressions
- \Rightarrow Evaluation order is explicit
- \Rightarrow Fewer patterns to analyse
- All intermediate results have a name
- \Rightarrow Easier to 'blame' subexpressions for errors
 - ▶ Names might be represented pointers in the implementation
- ▶ We still have nested statements

Multiple Paths

Teal

```
v := new array[int](1);
if condition {
    v := null;
} else {
    print(v);
}
v[0] := 1;
```

Teal

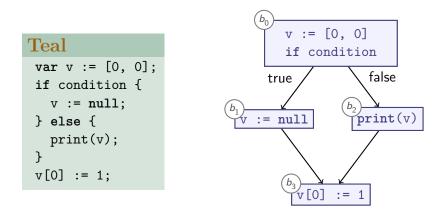
```
v := new array[int](1);
while condition {
    v := null;
}
v[0] := 1;
```

Need to reason about the order of execution of statements, too

Summary

- Understanding variable updates requires Flow-Sensitive Analysis
- Type analysis is not flow sensitive
- "Flow" is complicated, influenced by:
 - Expression evaluation order
 - Short-circuit evaluation
 - Statement execution order
- Best analysed with special intermediate representation:
 - Flatten nested expressions
 - Introduce temporary variables as needed
 - ... do something about statement execution? (up next!)

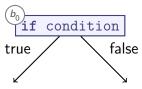
Control-Flow Graphs (CFGs)



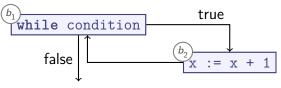
Control Flow Graphs encode statement execution order

Control-Flow-Graphs

- Encode statement order by *nodes* $\stackrel{\cup_{0 \text{ code}}}{\longrightarrow}$ and edges \rightarrow
- ► *Multiple* outgoing edges (branches): Add label:



Uniform representation for control statements:



Basic Blocks

Can group statements into Basic Blocks or keep them separate:

- A Basic Block is a sequence of statements
- Last statement is always return, branch, or jump
- Other statements are *never always* return, branch, or jump
- Usually faster to process

Summary

Different Intermediate Representations (IRs) to pick

- Usually eliminate nested expressions
 - Make evaluation order explicit

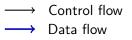
Control-Flow Graph (CFG):

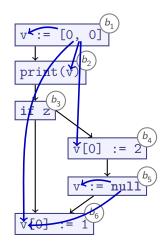
- ▶ Represent control flow as **Blocks** and **Control-Flow Edges**
- Edges represent control flow, **labelled** to identify conditionals
- Blocks can be single statements or Basic Blocks
 - Basic blocks are sequences of statements without branches

Control Flow

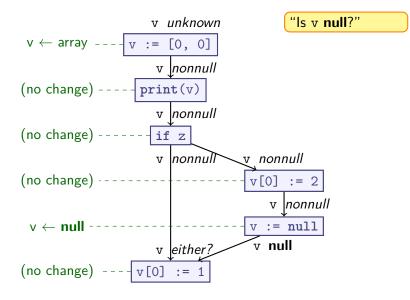
Understanding data flow requires understanding control flow:

Teal
<pre>var v := [0, 0];</pre>
<pre>print(v);</pre>
if z {
v[0] := 2;
v := null;
}
v[0] := 1;



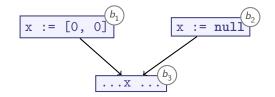


Intuition behind Data Flow Analysis



Knowledge about data "flows" through CFG

What does "either?" mean?



Should analysis report x as null or as nonnull?

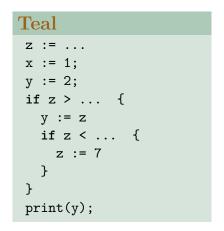
- New category: either
- "Can I safely dereference without a check?"
 - \Rightarrow better assume **null**
- "is this guaranteed to be null?"
 - \Rightarrow better assume **nonnull**
- We might not need extra either category, depending on why we are analysing

"May" vs "Must" Analysis

"May" analysis: we cannot rule out property

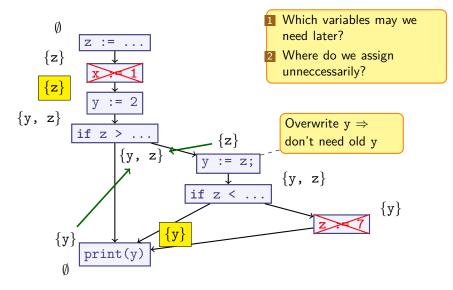
- "either?" becomes true
- Avoids False Negatives
- "Must" analysis: we can guarantee property
 - "either?" becomes false
 - Avoids False Positives

Another Analysis



- Which assignments are unnecessary?
- ⇒ Possible oversights / bugs (Live Variables Analysis)

Unnecessary Assignments: Intuition

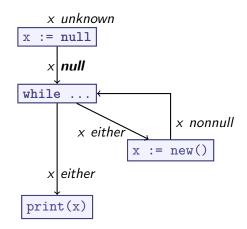


Analysis effective: found useless assignments to z and x $\frac{1}{7}$

Observations

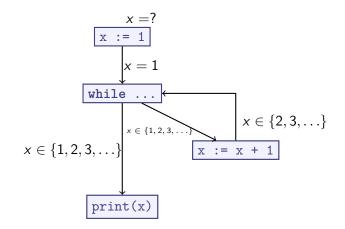
Data Flow analysis can be run *forward* or *backward* May have to *join* results from multiple sources
 Some analyses may need multiple "passes" (steps)

What about Loops? (1/2)



- Analysis: Null Pointer Dereference
- Stop when we're not learning anything new any more
- Works fine

What about Loops? (2/2)



Analysis: Reaching Definitions

We need to bound repetitions!

Summary: Data-Flow Analysis (Introduction)

- Data flow depends on control flow
- Data flow analysis examines how variables or other program state change across control-flow edges
- May have to join multiple results
- ▶ When joining "yes" and "no", must decide:
 - "May" analysis: optimistically report what is possible
 - "Must" analysis: conservatively report what is guaranteed
 - Alternative: introduce value for "don't know"
- Can run forward or backward relative to control flow edges
- Handling loops is nontrivial

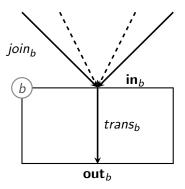
Engineering Data Flow Algorithms

1 General Algorithm

- Keep updating until nothing changes
- 2 Termination
 - ► Assumption: Operate on Control Flow Graph
 - Theory: Ensure termination
- (Correctness)

Data Flow Analysis on CFGs

- ► in_b: knowledge at entrance of basic block b
- out_b: knowledge at exit of basic block b
- ▶ join_b: combines all **out**_{bi} for all basic blocks b_i that flow into b "Join Function"
- *trans_b*: updates **out**_b from **in**_b "Transfer Function"



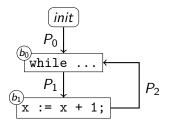
Characterising Data Flow Analyses

Characteristics:

- Forward or backward analysis
- L: Abstract Domain (the 'analysis domain')
- $trans_b : L \to L$
- ▶ join_b : $L \times L \rightarrow L$

Require properties of *L*, *trans*_b, *join*_b to ensure termination

Limiting Iteration



Does the following ever stop changing:

$$\mathsf{in}_{b_0} = \mathsf{join}_{b_0}(P_0, P_2)$$

Intuition: we keep generalising information

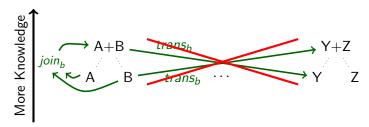
- Growth limit: bound amount of generalisation
- ▶ Make sure *join_b*, *trans_b* never throw information away

Eventually, either nothing changes or we hit growth limit

Ordering Knowledge

- ▶ B describes at least as much knowledge as A
- Either:
 - A = B (i.e., $A \sqsupseteq B \sqsupseteq A$), or
 - ▶ B has strictly more knowledge than A

Intuition: Knowing Less, Knowing More Structure of *L*:



- *join_b* must not lose knowledge
 - ▶ $join_b(A, B) \supseteq A$
 - $join_b(A, B) \supseteq B$
- ▶ *trans*^b must be *monotonic* over amount of knowledge:

$$x \sqsupseteq y \implies trans_b(x) \sqsupseteq trans_b(y)$$

▶ Introduce bound: ⊤ means 'too much information'

Aggregating Knowledge

$$P_1 = join_{b_0}(A, B)_{b_0} \qquad P_2 = trans_{b_0}(join_{b_0}(A, B))_{b_1}$$

- ▶ Interplay between *trans_b* and *join_b* helps preserve knowledge
- ► $join_b(A, B) \supseteq A$: As we add knowledge, P_1 either
 - Stays the same
 - Increases knowledge
- Monotonicity of $trans_b$: If P_1 goes up, then P_2 either
 - Stays the same
 - Increases knowledge
- \Rightarrow At each node, we either stay equal or grow

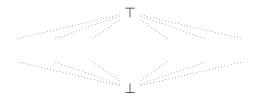
Now we must only set a growth limit...

Ascending Chains

	► A (possibly infinite) sequence a ₀ , a ₁ , a ₂ , is an ascending chain iff:
$a_k = a_{k+1} = \dots$	
	$a_i \sqsubseteq a_{i+1}$ (for all $i \ge 0$)
; a3	Ascending Chain Condition:
	For every ascending chain a ₀ , a ₁ , a ₂ , in abstract domain L:
a ₂	• there exists $k \ge 0$ such that:
a ₁	$a_k=a_{k+n}$ for any $n\geq 0$
<i>a</i> 0	

ACC is formalisation of growth limit

Top and Bottom



► *Convention*: We introduce two distinguished elements:

- ▶ **Top**: \top : $A \sqsubseteq \top$ for all A
- **Bottom**: \bot : $\bot \sqsubseteq A$ for all A

Since
$$join_b(A, B) \supseteq A$$
 and $join_b(A, B) \supseteq B$:

▶
$$join_b(\top, A) = \top = join_b(A, \top)$$

▶
$$join_b(\bot, A) \sqsupseteq A \sqsupseteq \bot$$

In practice, it's safe and simple to set:

$$join_b(\bot, A) = A = join_b(A, \bot)$$

Intuition:

- ► T: means 'contradictory / too much information'
- \blacktriangleright \perp : means 'no information known yet'

Summary

- Designing a Forward or backward analysis:
- Pick Abstract Domain L
 - ▶ Must be **partially ordered** with $(\supseteq) \subseteq L \times L$: $A \supseteq B$ iff A 'knows' at least as much as B
 - ► Unique top element ⊤
 - Unique bottom element \bot
- $trans_b : L \to L$
 - Must be monotonic:

$$x \sqsupseteq y \implies trans_b(x) \sqsupseteq trans_b(y)$$

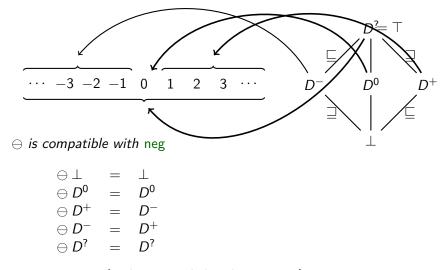
▶ $join_b : L \times L \rightarrow L$ must produce an *upper bound* for its parameters:

- ▶ $join_b(A, B) \supseteq A$
- ▶ $join_b(A, B) \supseteq B$

Satisfy Ascending Chain Condition to ensure termination

Easiest solution: make L finite

Abstract Domains Revisited



 \ominus is monotonic (and \oplus extended with \perp is, too)

Summary

• We can extend $\{D^+, D^-, D^0, D^?\}$ by adding \perp

$$L_D=\{D^+,D^-,D^0,D^?,\bot\}$$

- ► ⊥ representing "not known" not needed for our example analysis from Lecture 1, but would be needed if we had variables / control flow in that language
- L_D is finite, so the DCC holds trivially
- Our *Transfer Functions* \ominus , \oplus are monotonic