
EDAP15: Program Analysis
DATA FLOW ANALYSIS 1DATA FLOW ANALYSIS 1

Christoph Reichenbach



Announcements

I Registered for lab slots?
I Exercises start on Friday
I Homework 1 out on Thursday, deadline extended by 1 day

2 / 33



A New Analysis Challenge

Teal
var x := [0, 0];
print(x); // A
if z {

x[0] := 2; // B
x := null;

}
x[0] := 1; // C

I Analyse: Can there be a failure at B or C?
I Must distinguish between x at A vs. x at B and C
I Need to model flow of information: Flow-Sensitive Analysis
I Type analysis is not Flow-Sensitive (normally)

Need analysis that can represent data flow through program
3 / 33



Evaluation Order

Teal-0
fun p(a) = { print(a); return 1; }
p(p(0) + p(1));

Teal-0 with explicit order
var tmp1 := p(0);
var tmp2 := p(1);
var tmp3 := tmp1 + tmp2;
var tmp4 := p(tmp3);

Java or C or C++
// Many challenging constructions:
a[i++] = b[i > 10 ? i-- : i++] + c[f(i++, --i)];

Every analysis must remember the evaluation order rules!

4 / 33



Eliminating Nested Expressions

I No nested expressions
⇒ Evaluation order is explicit
⇒ Fewer patterns to analyse
I All intermediate results have a name
⇒ Easier to ‘blame’ subexpressions for errors

I Names might be represented pointers in the implementation
I We still have nested statements

5 / 33



Multiple Paths

Teal
v := new array[int](1);
if condition {

v := null;
} else {

print(v);
}
v[0] := 1;

Teal
v := new array[int](1);
while condition {

v := null;
}
v[0] := 1;

Need to reason about the order of execution of statements, too

6 / 33



Summary

I Understanding variable updates requires Flow-Sensitive
Analysis

I Type analysis is not flow sensitive
I “Flow” is complicated, influenced by:

I Expression evaluation order
I Short-circuit evaluation
I Statement execution order

I Best analysed with special intermediate representation:
I Flatten nested expressions
I Introduce temporary variables as needed
I . . . do something about statement execution? (up next!)

7 / 33



Control-Flow Graphs (CFGs)

Teal
var v := [0, 0];
if condition {

v := null;
} else {

print(v);
}
v[0] := 1;

v := [0, 0]
if condition
v := [0, 0]
if condition

b0

v := nullv := null
b1 print(v)print(v)

b2

v[0] := 1v[0] := 1
b3

true false

Control Flow Graphs encode statement execution order

8 / 33



Control-Flow-Graphs

I Encode statement order by nodes codecode
b0 and edges

I Multiple outgoing edges (branches): Add label:

if conditionif condition
b0

true false

I Uniform representation for control statements:

while conditionwhile condition
b1

x := x + 1x := x + 1
b2

true

false

9 / 33



Basic Blocks

Can group statements into Basic Blocks or keep them separate:

v := [0, 0]
if condition
v := [0, 0]
if condition

b0

Basic Block

v := [0, 0]v := [0, 0]
b0a

if conditionif condition
b0b

I A Basic Block is a sequence of statements
I Last statement is always return, branch, or jump
I Other statements are never always return, branch, or jump
I Usually faster to process

10 / 33



Summary

I Different Intermediate Representations (IRs) to pick
I Usually eliminate nested expressions

I Make evaluation order explicit
I Control-Flow Graph (CFG):

I Represent control flow as Blocks and Control-Flow Edges
I Edges represent control flow, labelled to identify conditionals
I Blocks can be single statements or Basic Blocks

I Basic blocks are sequences of statements without branches

11 / 33



Control Flow

Understanding data flow requires understanding control flow:

Teal
var v := [0, 0];
print(v);
if z {

v[0] := 2;
v := null;

}
v[0] := 1;

v := [0, 0]
b1

print(v)
b2

if z
b3

v[0] := 2
b4

v := null
b5

v[0] := 1
b6Control flow

Data flow

12 / 33



Intuition behind Data Flow Analysis

v := [0, 0]v := [0, 0]v ← array

print(v)print(v)(no change)

if zif z(no change)

v[0] := 2v[0] := 2(no change)

v := nullv := nullv ← null

v[0] := 1v[0] := 1(no change)

v unknown

v nonnull

v nonnull

v nonnull v nonnull

v nonnull

v nullv either?

“Is v null?”

Knowledge about data “flows” through CFG 13 / 33



What does “either?” mean?

x := [0, 0]
b1

x := null
b2

...x ...
b3

I Should analysis report x as null or as nonnull?
I New category: either
I “Can I safely dereference without a check?”
⇒ better assume null

I “is this guaranteed to be null?”
⇒ better assume nonnull

I We might not need extra either category, depending on why
we are analysing

14 / 33



“May” vs “Must” Analysis

I “May” analysis: we cannot rule out property
I “either?” becomes true
I Avoids False Negatives

I “Must” analysis: we can guarantee property
I “either?” becomes false
I Avoids False Positives

15 / 33



Another Analysis

Teal
z := ...
x := 1;
y := 2;
if z > ... {

y := z
if z < ... {

z := 7
}

}
print(y);

I Which assignments are unnecessary?
⇒ Possible oversights / bugs

(Live Variables Analysis)
16 / 33



Unnecessary Assignments: Intuition
1 Which variables may we

need later?
2 Where do we assign

unneccessarily?

z := ...z := ...

x := 1x := 1x := 1

y := 2y := 2

if z > ...if z > ...

y := z;y := z;

if z < ...if z < ...

z := 7z := 7z := 7

print(y)print(y)
∅

{y} {y}{y}

{y}

{y, z}

{z}
Overwrite y ⇒
don’t need old y

{y, z}

{y, z}

{z}{z}

{z}

∅

Analysis effective: found useless assignments to z and x 17 / 33



Observations

1 Data Flow analysis can be run forward or backward
2 May have to join results from multiple sources
3 Some analyses may need multiple “passes” (steps)

18 / 33



What about Loops? (1/2)

x := nullx := null

while ...while ...

x := new()x := new()

print(x)print(x)

x unknown

x null

x null

x null

x either

x either x nonnull
. .

I Analysis: Null Pointer Dereference
I Stop when we’re not learning anything new any more
I Works fine

19 / 33



What about Loops? (2/2)

x := 1x := 1

while ...while ...

x := x + 1x := x + 1

print(x)print(x)

x =?

x = 1

x ∈ {1, 2, 3, . . .}
x ∈ {1, 2, 3, . . .}

x ∈ {2, 3, . . .}

. .

I Analysis: Reaching Definitions

We need to bound repetitions!
20 / 33



Summary: Data-Flow Analysis
(Introduction)

I Data flow depends on control flow
I Data flow analysis examines how variables or other program
state change across control-flow edges

I May have to join multiple results
I When joining “yes” and “no”, must decide:

I “May” analysis: optimistically report what is possible
I “Must” analysis: conservatively report what is guaranteed
I Alternative: introduce value for “don’t know”

I Can run forward or backward relative to control flow edges
I Handling loops is nontrivial

21 / 33



Engineering Data Flow Algorithms

1 General Algorithm
I Keep updating until nothing changes

2 Termination
I Assumption: Operate on Control Flow Graph
I Theory: Ensure termination

3 (Correctness)

22 / 33



Data Flow Analysis on CFGs

I inb: knowledge at entrance of
basic block b

I outb: knowledge at exit of basic
block b

I joinb: combines all outbi for all
basic blocks bi that flow into b
“Join Function”

I transb: updates outb from inb
“Transfer Function”

transb

b inb

outb

joinb

23 / 33



Characterising Data Flow Analyses

Characteristics:
I Forward or backward analysis
I L: Abstract Domain (the ‘analysis domain’)
I transb : L→ L
I joinb : L× L→ L

Require properties of L, transb, joinb to ensure termination

24 / 33



Limiting Iteration

init

while ...

x := x + 1;

P0

P1 P2

b0

b1

I Does the following ever stop changing:

inb0 = joinb0(P0,P2)

I Intuition: we keep generalising information
I Growth limit: bound amount of generalisation
I Make sure joinb, transb never throw information away

Eventually, either nothing changes or we hit growth limit
25 / 33



Ordering Knowledge

B w A
A

B

I B describes at least as much knowledge as A
I Either:

I A = B (i.e., A w B w A), or
I B has strictly more knowledge than A

26 / 33



Intuition: Knowing Less, Knowing More
Structure of L:

A B

A+B
joinb

· · · Y Z

Y+Ztransb

transb

M
or
e
K
no
wl
ed
ge

I joinb must not lose knowledge
I joinb(A, B) w A
I joinb(A, B) w B

I transb must be monotonic over amount of knowledge:

x w y =⇒ transb(x) w transb(y)

I Introduce bound: > means ‘too much information’
27 / 33



Aggregating Knowledge

b0 b1
P1 = joinb0(A, B) P2 = transb0(joinb0(A, B))

I Interplay between transb and joinb helps preserve knowledge
I joinb(A,B) w A:
As we add knowledge, P1 either
I Stays the same
I Increases knowledge

I Monotonicity of transb: If P1 goes up, then P2 either
I Stays the same
I Increases knowledge

⇒ At each node, we either stay equal or grow

Now we must only set a growth limit. . .
28 / 33



Ascending Chains

ak = ak+1 = . . .

a3

a2

a1

a0

I A (possibly infinite) sequence a0, a1, a2, . . . is an
ascending chain iff:

ai v ai+1 (for all i ≥ 0)

I Ascending Chain Condition:
I For every ascending chain a0, a1, a2, . . . in
abstract domain L:

I there exists k ≥ 0 such that:

ak = ak+n for any n ≥ 0

ACC is formalisation of growth limit

29 / 33



Top and Bottom
>

⊥

I Convention: We introduce two distinguished elements:
I Top: >: A v > for all A
I Bottom: ⊥: ⊥ v A for all A

I Since joinb(A,B) w A and joinb(A,B) w B:
I joinb(>, A) = > = joinb(A,>)
I joinb(⊥, A) w A w ⊥

I In practice, it’s safe and simple to set:
joinb(⊥, A) = A = joinb(A,⊥)

I Intuition:
I >: means ‘contradictory / too much information’
I ⊥: means ‘no information known yet’

30 / 33



Summary
I Designing a Forward or backward analysis:
I Pick Abstract Domain L

I Must be partially ordered with (w) ⊆ L× L:
A w B iff A ‘knows’ at least as much as B

I Unique top element >
I Unique bottom element ⊥

I transb : L→ L
I Must be monotonic:

x w y =⇒ transb(x) w transb(y)
I joinb : L× L→ L must produce an upper bound for its
parameters:
I joinb(A, B) w A
I joinb(A, B) w B

I Satisfy Ascending Chain Condition to ensure termination
I Easiest solution: make L finite

31 / 33



Abstract Domains Revisited

D− D0 D+

D?

v w

= >

⊥

w v

· · · · · ·−3 −2 −1 0 1 2 3

	 is compatible with neg

	⊥ = ⊥
	 D0 = D0

	 D+ = D−

	 D− = D+

	 D? = D?

	 is monotonic (and ⊕ extended with ⊥ is, too)
32 / 33



Summary

I We can extend {D+,D−,D0,D?} by adding ⊥

LD = {D+,D−,D0,D?,⊥}

I⊥ representing “not known” – not needed for our example
analysis from Lecture 1, but would be needed if we had
variables / control flow in that language

I LD is finite, so the DCC holds trivially
I Our Transfer Functions 	,⊕ are monotonic

33 / 33


