
EDAP15: Program Analysis
INTRODUCTIONINTRODUCTION

Christoph Reichenbach

Welcome!

▶ EDAP15: Program Analysis
▶ Instructor: Christoph Reichenbach

christoph.reichenbach@cs.lth.se
▶ Teaching Assistant: Idriss Riouak

idriss.riouak@cs.lth.se
▶ Course Homepage:

http://cs.lth.se/EDAP15

2 / 40

http://cs.lth.se/EDAP15

Course Format
▶ Tentatively In-Person
▶ Core material:

▶ Lectures (bring your questions!)
▶ Videos (Preparatory and others)
▶ Homework

▶ Questions?
▶ Ask in class

▶ Ask-and-Upvote system (or just raise your hand!)
▶ Online forum
▶ Office hours

▶ Group Exercises
▶ Labs in E:Gamma, Fri 08:00–12:00 (two time slots)

▶ Online Quizzes
▶ Written Exam

3 / 40

Topics

▶ Concepts and techniques for understanding programs
▶ Analysing program structure
▶ Analysing program behaviour

▶ Practical concerns in program analysis

Language focus: Teal, a teaching language
▶ Concepts generalise to other mainstream languages:

▶ Imperative
▶ Object-Oriented

4 / 40

Goals

▶ Understand:
▶ What is program analysis (not) good for?
▶ What are strenghts and limitations of given analyses?
▶ How do analyses influence each other?
▶ How do programming language features influence analyses?
▶ What are some of the most important analyses?

▶ Be able to:
▶ Implement typical program analyses
▶ Critically assess typical program analyses

5 / 40

Resources

▶ Course website (http://cs.lth.se/EDAP15)
▶ Links to everything listed here
▶ List of expected skills
▶ Slides
▶ Announcements

▶ Textbooks
▶ Moodle

▶ Slides
▶ Quizzes
▶ Videos
▶ Forum

▶ Course git (GitLab)
▶ Homework assignments

6 / 40

http://cs.lth.se/EDAP15

Textbooks

Static Program AnalysisStatic Program Analysis
Møller & Schwartzbach
▶ Optional
▶ PDF online from authors

Principles of Program AnalysisPrinciples of Program Analysis
Nielson, Nielson & Hankin

▶ Optional
▶ 3 copies in the library
▶ Theory-driven

7 / 40

Week Overview

Mo Tu We Th Fr
10:15 10:15 08:00

in E:Gamma
Labs
first week only

08:00&10:00
in E:2116 in E:2116 in E:Gamma

Labs
Class Videos and

Quizzes
Class Videos and

Quizzes
Homework
release

Mo Tu We Th Fr
. . .

Mo Tu We Th Fr
Homework
deadline

8 / 40

How to Pass
▶ 2020-11-02 18:00: Form Groups of 2

▶ Contact Idriss if you can’t find a partner
▶ 2020-11-06 10:00: Register group for lab slot
▶ Warmup projects:

▶ HW0: optional (recommended!) lab, this Thursday/Friday
▶ Homework projects:

▶ Who: Groups
▶ What: Implement program analyses for Teal
▶ Start: Homework up Wednesdays Weeks 2, 3, 4 & 6
▶ Grading:

▶ Submit solutions in course git
▶ Explain solution to TA

▶ Deadline:
▶ HW1–5: Thursday 20:00, 13 days after homework is up

▶ Final Exam starting 2021-01-15
▶ Admission: Passed all homework projects
▶ Format: written exam

9 / 40

Structure

W44 Homework #0 (optional) Wednesday: Groups formed
W45 Homework #1 start Monday: Lab slot assignemnts
W46 Homework #2 start
W47 Homework #3 start Homework #1 due
W48 Homework #2 due
W49 Homework #4 start Homework #3 due
W50 Homework #4 due

10 / 40

Uses of Program Analysis

Static Analysis

Dynamic Analysis

x Program

IDE

Program
Understanding ▶ Highlighting

▶ Search
▶ Refactoring

Compiler

Optimisation

Language
Runtime

Testing Profiling

Automatic
Repair

Adaptive
Optimisation

Static
CheckerBug-checking,

verification

11 / 40

Categories of Program Analyses

Static Analysis

Dynamic Analysis

▶ Examines structure
▶ Sees entire program

(mostly. . .)

▶ Interactive Theorem
Provers

▶ (Most) Type Checkers
▶ Static Checkers

(FindBugs,
SonarQube, . . .)

▶ Compiler Optimisers

▶ Examines behaviour
▶ Sees interactions

program ↔ world

▶ Debuggers ▶ Unit Tests
▶ Benchmarks
▶ Profilers

Manual / Interactive AutomaticManual / Interactive Automatic

Our Focus
12 / 40

Summary
▶ Program analyses are key components in Software Tools:

▶ IDEs
▶ Compilers
▶ Bug and Vulnerability Checkers
▶ Run-time systems

. . .
▶ Main Categories:

▶ Static Analysis:
Examine program structure

▶ Dynamic Analysis:
Examine program run-time behaviour

▶ Automatic Analysis:
“Black Box”: Minimal user interaction

▶ Manual / Interactive Analysis:
User in the loop

▶ Advanced manual analyses exploit automatic analysis
13 / 40

Examples of Program Analysis

Questions:
▶ ‘Is the program well-formed?’

gcc -c program.c
javac Program.java

At least for C, C++, Java; not so easy for JavaScript!
▶ ‘Does my factorial function produce the right input in the

range 0–5?’

Java
@Test // Unit Test
public void testFactorial() {

int[] expected = new int[] { 1, 1, 2, 6, 24, 120 };
for (int i = 0; i < expected.length; i++) {

assertEquals(expected[i], factorial(i));
} }

14 / 40

Let’s Analyse a Program!

▶ MISRA-C standard specifies:
“The library functions . . . , gets, . . . shall not be used.”

▶ Given some program.c:
user@host$ grep ’gets’ program.c # string search

gets(input_buffer);
/* The code below gets the system configuration */
int failed_gets_counter = 0;

user@host$

At least 2 of 3 resuls were wrong: “False Positives”

15 / 40

A First Challenge, Continued
user@host$ grep ’gets(’ program.c

gets(input_buffer);
user@host$

▶ More precise: no false positives!
▶ Will this catch all calls to gets?

C: program2.c
#include <stdio.h>
void f(char* target_buffer) {

char *(*dummy)(char*) = gets;
dummy(target_buffer);

}

String search not smart enough: “False Negative”

16 / 40

A First Challenge, Continued Again

C: program2.c
#include <stdio.h>
void f(char* target_buffer) {

char *(*dummy)(char*) = gets;
dummy(target_buffer);

}

user@host$ cc -c program.c -o program.o
user@host$ nm program.o

check symbol table in compiled program
0000000000000000 T f

U gets ←− Aha!
U _GLOBAL_OFFSET_TABLE_

user@host$

Using a more powerful analysis yielded better results
17 / 40

A First Challenge, Solved?

C: program3.c
#include<stdio.h>
#include<dlfcn.h>
int f(char* target_buffer) {

void* handle = dlopen("/lib/x86_64-linux-gnu/libc.so.6",
RTLD_LAZY);

void* sym = dlsym(handle, "gets");
void(*p)(char*) = sym;
p(target_buffer);
return 0;

}

▶ Dynamic library loading: gets will not show up in symbol
table

Fancier program =⇒ harder analysis
18 / 40

Analysis vs. Property-of-Interest

▶ Distinguish:
▶ Property of interest: P(φ)

▶ All lines in φ that reference gets
▶ Does φ type-check?
▶ Where does φ spend most execution time?

▶ Analysis A(φ) that approximates P(φ)

P(φ) ≈ A(φ)

19 / 40

And How Good Is It?
▶ As we saw, program analyses may be incorrect
▶ We often describe them with Information Retrieval

terminology:
A(φ) not A(φ)

P(φ) True Positive False Negative
not P(φ) False Positive True Negative

▶ How well does A approximate P?
▶ Assume A(φ) returns n reports

n = #True Positives + #False Positives reports
▶ Are the reports good?

Precision = #True Positives
n

▶ Are the reports comprehensive?
Recall = #True Positives

#True Positives+#False Negatives
▶ #False Negatives (and thus Recall) is usually impossible to

determine in program analysis
20 / 40

Summary

▶ Purpose of Analysis A:
▶ Compute Property-of-interest P

▶ Program Analysis is nontrivial
▶ Programs can hide information that A wants
▶ Analysis A can misunderstand parts of the program

21 / 40

Soundness and Completeness

Can we always build a A with A(φ) = P(φ)?
▶ Connection to Mathematical Logic:

▶ Assume P is boolean
▶ A is sound (with respect to P) iff:

A(φ) =⇒ P(φ) (Perfect Precision)

▶ A is complete (with respect to P) iff:

A(φ)⇐= P(φ) (Perfect Recall)

▶ A(φ) = P(φ) iff A is both sound & complete

What if P(φ) checks whether φ terminates?

22 / 40

The Bottom Line

“Everything interesting about the behaviour
of programs is undecidable.”

— Anders Møller, paraphrasing H.G. Rice [1953]

We must choose:
▶ Soundness
▶ Completeness
▶ Decidability
. . . pick any two.

23 / 40

Soundness and Completeness: Caveat

P

Acomplete Asound

P

▶ Beware: “sound” and “complete” be confusing:
▶ Example: P(φ) is “φ has a bug”
▶ If you now want to check P, the negation of P:

▶ P(φ) is “φ does not have a bug”
▶ Acomplete (= run Acomplete and invert output) is sound wrt P

▶ Asound is complete wrt P

Sound and Complete have converse meanings for P and P!

24 / 40

Soundness and Completeness: Caveat

P

Acomplete Asound

P

▶ Beware: “sound” and “complete” be confusing:
▶ Example: P(φ) is “φ has a bug”
▶ If you now want to check P, the negation of P:

▶ P(φ) is “φ does not have a bug”
▶ Acomplete (= run Acomplete and invert output) is sound wrt P
▶ Asound is complete wrt P

Sound and Complete have converse meanings for P and P!

24 / 40

Summary
▶ Given property P and analysis A:

▶ A is sound if it triggers only on P
P = “program has bug”: A reports only bugs

▶ A is complete if it always triggeres on P
P = “program has bug”: A reports all bugs

▶ If P is nontrivial (i.e., depend on behaviour):

Decidable

Sound CompletePartial

∅
Conservative Optimistic

25 / 40

Building a Program Analysis
Input Program

Language
Frontend

Language
Runtime

Fact Extraction

Language
Definition

Theory

Specialised
Theory

Model

Abstraction

Step 1:

Step 2: ???

Step 3:

Analysis Result

Analysis Core

Language
Frontend

Language
Runtime

Language
Definition

Theory

Starting Points

26 / 40

Building a Program Analysis
Input Program

Language
Frontend

Language
Runtime

Fact Extraction

Language
Definition

Theory

Specialised
Theory

Model

Abstraction

Step 1:

Step 2: ???

Step 3:

Analysis Result

Analysis Core

Language
Frontend

Language
Runtime

Language
Definition

Theory

Starting Points

26 / 40

Gathering Our Tools

The Java® Language

Specification
Java SE 8 Edition

James Gosling

Bill Joy

Guy Steele

Gilad Bracha

Alex Buckley

2015-02-13

Theories Language
Definitions Tools

Analysis
Frame-
works

Astrée

Compilers

Hardware
27 / 40

Language Definitions
▶ Define structure (syntax) and meaning (semantics) of

language
Syntax example:Syntax example:

e ::= zero
| one
| ⟨e⟩+⟨e⟩
| ⟨e⟩-⟨e⟩
| neg ⟨e⟩
| (⟨e⟩)
| log ⟨e⟩

▶ Property of Interest: Does a given program φ ∈ e compute
a number ≥ 0?

First, we must understand the language semantics
28 / 40

Language Definitions: Semantics

▶ Language Definitions also specify Semantics:
▶ Static Semantics:

▶ Connect parts of the program structure (variables, functions,
classes, . . .)

▶ Enforce restrictions (e.g., via type checking)
▶ Dynamic Semantics:

▶ Program run-time behaviour
▶ We will not explore formal semantics in depth, in this course
▶ Here: assume “obvious” semantics

29 / 40

Analysing Programs: A First Shot

Property of Interest: Does a given program φ ∈ e compute a
nonnegative number?

e ::= zero
| one
| ⟨e⟩+⟨e⟩
| ⟨e⟩-⟨e⟩
| neg ⟨e⟩
| (⟨e⟩)
| log ⟨e⟩

▶ How could we analyse this for a given program φ?
▶ Just run φ and check the result
▶ Works fine here!
▶ Problematic once we add parameters or loops/recursion

Let’s explore what we would do for a more complex language
30 / 40

Simplifying the Language
▶ Let’s make it easier to analyse the language
▶ We don’t need parentheses for the analysis
▶ a-b = a+neg b
⇒ Abstraction (we join similar problems into one)

▶ log is too difficult
⇒ Restrict to sub-language (give up on some problems)

e ::= zero
| one
| ⟨e⟩+⟨e⟩

| neg ⟨e⟩

Simplification helps us get started, but restricting to a
sublanguage can quickly render an analysis impractical

31 / 40

Finding a Good Theory

▶ Recall: A(φ) should check if φ computes result ≥ 0
▶ There are many theories for program analysis
▶ We pick Abstract Interpretation (Patrick & Radhia Cousot):

▶ Map all values to a simpler abstract domain

▶ Map all operations so they respect the abstraction

▶ For example: classify programs into abstract domain
containing:
▶ D0: Computes 0
▶ D+: Computes a positive value
▶ D−: Computes a negative value

▶ Notation: φ ;D a , where a is one of D0, D+, D−

34 / 40

Correspondence: Concrete and Abstract

· · · · · ·−3 −2 −1 0 1 2 3 D− D0 D+

D?

Also:
▶⊖ “is compatible with” neg
▶⊕ “is compatible with” +

Abstract Interpretation explores these ideas in great detail

35 / 40

Finding a Good Theory

▶ Recall: A(φ) should check if φ computes result ≥ 0
▶ There are many theories for program analysis
▶ We pick Abstract Interpretation (Patrick & Radhia Cousot):

▶ Map all values to a simpler abstract domain
▶ Map all operations so they respect the abstraction

▶ For example: classify programs into abstract domain
containing:
▶ D0: Computes 0
▶ D+: Computes a positive value
▶ D−: Computes a negative value

▶ Notation: φ ;D a , where a is one of D0, D+, D−

36 / 40

Semantics
e ::= zero

| one
| ⟨e⟩+⟨e⟩
| neg ⟨e⟩

⊖ D0 = D0

⊖ D+ = D−

⊖ D− = D+

⊖ D? = D?

a1 ⊕ a2 =


D+ D0 D−

D+ D+ D+ D?

D0 D+ D0 D−

D− D? D− D−

D? ⊕ a = D? = a ⊕ D?

zero ;D D0 one ;D D+

if x ;D a then
neg x ;D ⊖ a

if x ;D a1 and y ;D a2 then
x + y ;D a1 ⊕ a2

37 / 40

Correspondence: Concrete and Abstract

· · · · · ·−3 −2 −1 0 1 2 3 D− D0 D+

D?

Also:
▶⊖ “is compatible with” neg
▶⊕ “is compatible with” +

Abstract Interpretation explores these ideas in great detail 38 / 40

Summary

▶ Semantics derive from syntax
▶ Static Semantics: Compile-time behaviour
▶ Dynamic Semantics: Run-time behaviour

▶ Static program analysis approximates dynamic semantics,
statically

▶ Abstract Interpretation: Theory for program analysis
▶ Map program semantics into abstract domain
▶ Map operations to compatible operations on abstract domain
▶ Challenge: remain precise yet decidable
▶ Foundation to other static analysis theories

39 / 40

Outlook

▶ Remember:
▶ Join Moodle
▶ Check for Videos and Quizzes tomorrow
▶ Form groups by Wednesday, 18:00!

▶ Our initial focus will be on static program analysis:
▶ Type Analysis
▶ Data Flow Analysis
▶ Heap Analysis

▶ Next Lecture: Wednesday, same place:
▶ Type-Based Analysis

http://cs.lth.se/EDAP15

40 / 40

http://cs.lth.se/EDAP15

