

Data Flow Analysis on CFGs

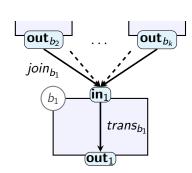
- ▶ join_h: Join Function
- ▶ trans_b: Transfer Function
- **▶** in_b:

$$\mathsf{in}_{b_1} = \mathit{join}_{b_1}(\mathsf{out}_{b_2}, \dots, \mathsf{out}_{b_k})$$

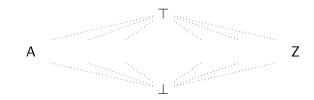
▶ out_b:

$$\mathsf{out}_{b_1} = \mathit{trans}_{b_1}(\mathsf{in}_{b_1})$$

- ► Forward Analysis
- ► Bakward Analysis

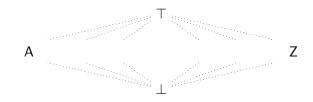


Join and Transfer Functions



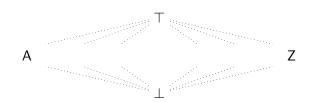
- ▶ L: Abstract Domain
 - ▶ Ordered by $(\sqsubseteq) \subseteq L \times L$

Join and Transfer Functions



- ▶ L: Abstract Domain
 - ▶ Ordered by $(\sqsubseteq) \subseteq L \times L$ $\top \in L$ for all $x : x \sqsubseteq \top$ Top element
 - $\bot \in L$ for all $x : \bot \sqsubseteq x$ Bottom element (optional)

Join and Transfer Functions



- ► L: Abstract Domain
 - ▶ Ordered by $(\sqsubseteq) \subseteq L \times L$

$$\top \in L$$
 for all $x : x \sqsubseteq \top$ Top element $\bot \in L$ for all $x : \bot \sqsubseteq x$ Bottom element (optional)

- trans_b : $L \rightarrow L$
 - ► monotonic
- \blacktriangleright join_b: $L \times ... \times L \rightarrow L$
 - pointwise monotonic

 $trans_b(x) \sqsubseteq trans_b(y)$

 $join_b(z_1,\ldots,z_k,x,\ldots,z_n) \stackrel{\vee}{\sqsubseteq} join_b(z_1,\ldots,z_k,y,\ldots,z_n)$

Lattices ('gitter' in Swedish)

Image by Emma Mae (Flickr) via Wikimedia commons

Partially Ordered Set

Lattices L are based on a partially ordered set $\langle \mathcal{L}, \sqsubseteq \rangle$:

- ▶ Set: \mathcal{L} describes possible information
- \blacktriangleright (\sqsubseteq) $\subseteq \mathcal{L} \times \mathcal{L}$:
- ▶ Intuition for $a \sqsubseteq b$ (for program analysis):
 - ▶ b has at least as much information as a

Partially Ordered Set

Lattices L are based on a partially ordered set $\langle \mathcal{L}, \sqsubseteq \rangle$:

- ▶ Set: L describes possible information
- \blacktriangleright (\sqsubseteq) $\subseteq \mathcal{L} \times \mathcal{L}$:
- ▶ Intuition for $a \sqsubseteq b$ (for program analysis):
 - ▶ b has at least as much information as a
- ▶ (□) is a partial order.

```
a \sqsubseteq a Reflexivity

a \sqsubseteq b and b \sqsubseteq a \Longrightarrow a = b Antisymmetry

a \sqsubseteq b and b \sqsubseteq c \Longrightarrow a \sqsubseteq c Transitivity
```

Partially Ordered Set

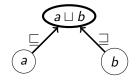
Lattices L are based on a partially ordered set $\langle \mathcal{L}, \sqsubseteq \rangle$:

- ▶ Set: L describes possible information
- \blacktriangleright (\sqsubseteq) $\subseteq \mathcal{L} \times \mathcal{L}$:
- ▶ Intuition for $a \sqsubseteq b$ (for program analysis):
 - b has at least as much information as a
- ▶ (\sqsubseteq) is a partial order.

$$a \sqsubseteq a$$
 Reflexivity
 $a \sqsubseteq b$ and $b \sqsubseteq a \Longrightarrow a = b$ Antisymmetry
 $a \sqsubseteq b$ and $b \sqsubseteq c \Longrightarrow a \sqsubseteq c$ Transitivity

- Example:
 - $ightharpoonup \mathcal{L} = \{unknown, true, false, true-or-false\}$
 - ▶ unknown ⊑ true ⊑ true-or-false
 - ightharpoonup unknown \sqsubseteq false \sqsubseteq true-or-false

Least Upper Bound

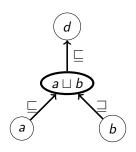


Combining potentially contradictory information:

- ▶ Join operator: (\sqcup) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$
- ▶ Pointwise monotonic:

$$a \sqsubseteq a \sqcup b$$
 and $b \sqsubseteq a \sqcup b$

Least Upper Bound



Combining potentially contradictory information:

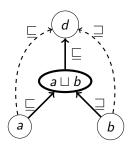
- ▶ Join operator: (\sqcup) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$
- ▶ Pointwise monotonic:

$$a \sqsubseteq a \sqcup b$$
 and $b \sqsubseteq a \sqcup b$

► *Least* element with this property:

$$a \sqsubseteq d$$
 and $b \sqsubseteq d \implies a \sqcup b \sqsubseteq d$

Least Upper Bound



Combining potentially contradictory information:

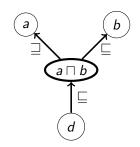
- ▶ Join operator: (\sqcup) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$
- ▶ Pointwise monotonic:

$$a \sqsubseteq a \sqcup b$$
 and $b \sqsubseteq a \sqcup b$

► *Least* element with this property:

$$a \sqsubseteq d$$
 and $b \sqsubseteq d \implies a \sqcup b \sqsubseteq d$

Greatest Lower bound



Converse operation:

- ▶ Meet operator: (\sqcap) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$
- ▶ Pointwise monotonic:

$$a \sqcap b \sqsubseteq a \text{ and } a \sqcap b \sqsubseteq b$$

Greatest element with this property:

$$d \sqsubseteq a \text{ and } d \sqsubseteq b \implies d \sqsubseteq a \sqcap b$$

Lattices

$$L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$$

- ► L: Underlying set
- ▶ $(\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
- ▶ (\sqcup) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$: Join (computes l.u.b.)
- ▶ (\sqcap) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$: Meet (computes g.l.b.)

Lattices

$$\textit{L} = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$$

- ▶ £: Underlying set
- ▶ $(\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
- ▶ (\sqcup) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$: Join (computes l.u.b.)
- ▶ (\sqcap) : $\mathcal{L} \times \mathcal{L} \to \mathcal{L}$: Meet (computes g.l.b.)
- can show:

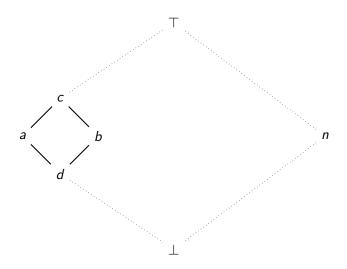
Commutativity:
$$a \sqcup b = b \sqcup a$$

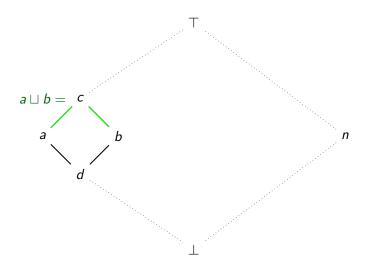
Associativity: $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$
(Analogous for \sqcap)

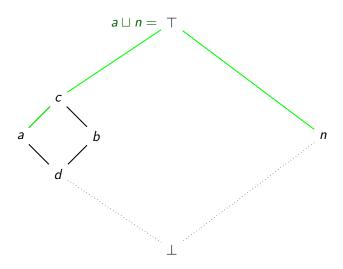
Complete Lattices

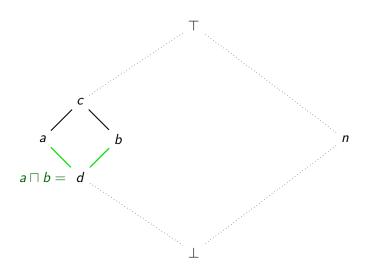
A lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$ is *complete* iff:

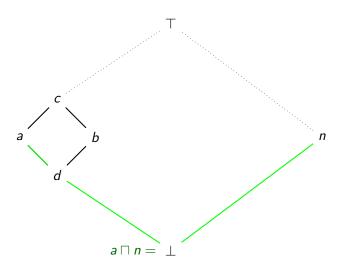
- ▶ For any $\mathcal{L}' \subseteq \mathcal{L}$ there exist:
 - ightharpoonup $\top = \bigsqcup \mathcal{L}'$
 - ${}^{\blacktriangleright} \bot = \textstyle \bigcap \mathcal{L}'$











Example: Binary Lattice

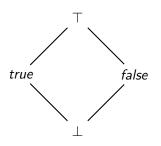
```
true 
ightharpoonup \top = true

ightharpoonup \bot = false

ightharpoonup \sqsubseteq logical "or"

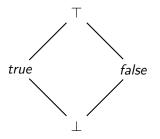
ightharpoonup \sqcap = logical "and"
```

Example: Booleans



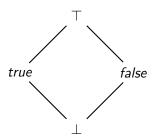
- ▶ If $\mathbb{B} = \{ true, false \}$:
 - ▶ Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$

Example: Booleans



- ▶ If $\mathbb{B} = \{ true, false \}$:
 - lacktriangle Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$
- ▶ Interpretation for data flow e.g.:
 - ightharpoonup \top = true-or-false
 - $ightharpoonup \perp = unknown$
 - ▶ $a \sqcup b$: either a or b
 - ▶ $a \sqcap b$: both a and b

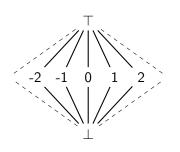
Example: Booleans



- ▶ If $\mathbb{B} = \{true, false\}$:
 - ▶ Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$
- ▶ Interpretation for data flow e.g.:
 - ightharpoonup \top = true-or-false
 - $ightharpoonup \bot = unknown$
 - ▶ $a \sqcup b$: either a or b
 - ▶ $a \sqcap b$: both a and b

Other interpretations possible

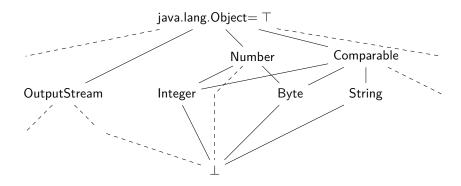
Example: Flat Lattice on Integers



- lacktriangle Sometimes written $\mathbb{Z}_{\perp}^{\top}$
- $ightharpoonup op op = \mathbb{Z}$
- $ightharpoonup \bot = \emptyset$

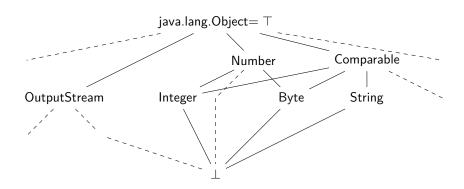
Analogous for other X_{\perp}^{\top} from set X

Example: Type Hierarchy Lattices



▶ ☐ constructs most precise supertype

Example: Type Hierarchy Lattices



- ▶ ☐ constructs most precise supertype
- ▶ ☐ constructs *intersection types*:

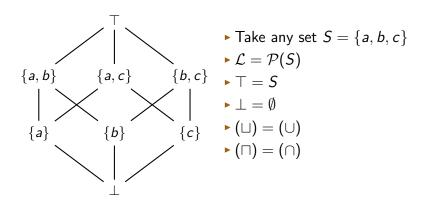
 $java.lang.Comparable \sqcap java.io.Serializable$

► Java notation:

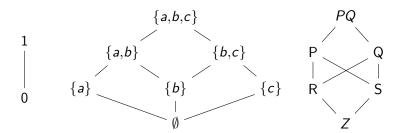
java.lang.Comparable & java.io.Serializable

14 / 19

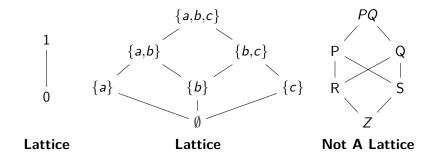
Example: Powersets



Example: Lattices and Non-Lattices

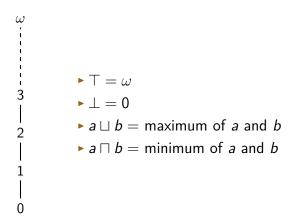


Example: Lattices and Non-Lattices



Right-hand side is missing e.g. a unique $R \sqcup S$

Example: Natural numbers with 0, ω



Product Lattices

- Assume (complete) lattices:
 - $\blacktriangleright L_1 = \langle \mathcal{L}_1, \sqsubseteq_1, \sqcap_1, \sqcup_1, \top_1, \perp_1 \rangle$
 - $\blacktriangleright L_2 = \langle \mathcal{L}_2, \sqsubseteq_2, \sqcap_2, \sqcup_2, \top_2, \perp_2 \rangle$

Product Lattices

- Assume (complete) lattices:
 - $\blacktriangleright L_1 = \langle \mathcal{L}_1, \sqsubseteq_1, \sqcap_1, \sqcup_1, \top_1, \perp_1 \rangle$
 - $\blacktriangleright L_2 = \langle \mathcal{L}_2, \sqsubseteq_2, \sqcap_2, \sqcup_2, \top_2, \perp_2 \rangle$
- ▶ Let $L_1 \times L_2 = \langle \mathcal{L}_1 \times \mathcal{L}_2, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$ where:

Product Lattices

- ► Assume (complete) lattices:
 - $ightharpoonup L_1 = \langle \mathcal{L}_1, \sqsubseteq_1, \sqcap_1, \sqcup_1, \top_1, \perp_1 \rangle$
 - $\blacktriangleright L_2 = \langle \mathcal{L}_2, \sqsubseteq_2, \sqcap_2, \sqcup_2, \top_2, \perp_2 \rangle$
- ▶ Let $L_1 \times L_2 = \langle \mathcal{L}_1 \times \mathcal{L}_2, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$ where:
 - $ightharpoonup \langle a,b\rangle \sqsubseteq \langle a',b'\rangle$ iff $a\sqsubseteq_1 a'$ and $b\sqsubseteq_2 b'$

 - $ightharpoonup \top = \langle \top_1, \top_2 \rangle$
 - $\blacktriangleright \perp = \langle \perp_1, \perp_2 \rangle$

Point-wise products of (complete) lattices are again (complete) lattices

Summary

- Complete lattices are formal basis for many program analyses
- ▶ Complete lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$
 - ▶ £: Carrier set
 - ▶ (□): Partial order
 - ▶ (□): Join operation: find least upper lower bound
 - ▶ (□): Meet operation: find greatest lower bound (not usually necessary)
 - ► T: Top-most element of complete lattice
 - ▶ ⊥: Bottom-most element of complete lattice
- ▶ **Product Lattices**: $L_1 \times L_2$ forms a lattice if L_1 and L_2 are lattices