

EDAP15: Program Analysis

FORMAL NOTATION

Christoph Reichenbach

Basic Formal Notation

Tuples:

- $\begin{array}{c} \langle a \rangle \\ \bullet \text{ Notation: } \langle a, b \rangle \quad (\text{pair}) \\ \langle a, c, d \rangle \quad (\text{triple}) \end{array}$
- Fixed-length (unlike list)
- ▶ Group items, analogous to (read-only) record/object

 \mathbb{R} (The (infinite) set of real numbers)

Basic operations on sets

$x \in S$	Is x contained in S ?	True: $1 \in \{1\}$ and $1 \in \mathbb{Z}$ False: $2 \in \{1\}$ or $\pi \in \mathbb{Z}$
<i>x</i> ∉ <i>S</i>	Is x NOT containd in S ?	
$A \cup B$	Set union	$\begin{array}{rcl} \{1\}\cup\{2\} &=& \{1,2\}\\ \{1,3\}\cup\{2,3\} &=& \{1,2,3\} \end{array}$
$A \cap B$	Set intersection	$\begin{array}{rcl} \{1\} \cap \{2\} & = & \emptyset \\ \{1,3\} \cap \{2,3\} & = & \{3\} \end{array}$
$A \subseteq B$	Subset relationship	True: $\emptyset \subseteq \{1\}$ and $\mathbb{Z} \subseteq \mathbb{R}$ False: $\{2\} \subseteq \{1\}$
$A \times B$	Product set	$ \begin{array}{l} \{1,2\}\times\{3,4\} \\ = \{\langle 1,3\rangle, \langle 1,4\rangle, \langle 2,3\rangle, \langle 2,4\rangle\} \end{array} $

Relations

A relation R of arity n is a set of tuples of the form

$$R = \{ \langle \mathbf{v}_1^1, \mathbf{v}_2^1, \dots, \mathbf{v}_n^1 \rangle \\ \vdots \\ \langle \mathbf{v}_1^k, \mathbf{v}_2^k, \dots, \mathbf{v}_n^k \rangle \}$$

Notation:

$$R(x_1,\ldots,x_n) \iff \langle x_1,\ldots,x_n \rangle \in R$$

• Example: the less-than-or-equals relation over integers:

$$(\leq) \subseteq \mathbb{Z} \times \mathbb{Z}$$

Relations of arity 2 are called *binary* relations:
Notation:

1

$$\mathsf{R}(x,y) \iff x \ \mathsf{R} \ y$$

Graphs

A (directed) graph ${\mathcal G}$ is a tuple ${\mathcal G}=\langle {\mathcal N}, {\mathcal E}\rangle$, where:

- $\blacktriangleright \, \mathcal{N}$ is the set of *nodes* of \mathcal{G}
- $\mathcal{E} \subseteq \mathcal{N} imes \mathcal{N}$ is the set of *edges* of \mathcal{G}
- Often: Add function $f : \mathcal{E} \to X$ to *label* edges

Summary

- Tuples group a fixed number of items
- Sets represent a (possibly infinite) number of distinct elements
 - ▶ We use them e.g. to represent possible analysis results
- Relations are sets of equal-sized tuples
 - We mostly use them implicitly
 - Similar to database tables, but:
 - No duplicate rows
 - No row order
- (Directed) Graphs represent nodes and edges between them
 - Optional labels on edges possible
 - ▶ We use them e.g. for program dependencies