EDAP15: Program Analysis

FORMAL NOTATION

Christoph Reichenbach

Basic Formal Notation

- Tuples:
- Notation: $\langle a, b\rangle \quad$ (pair)
$\langle a, c, d\rangle \quad$ (triple)
- Fixed-length (unlike list)
- Group items, analogous to (read-only) record/object
- Sets:
$\emptyset=\{ \} \quad$ (the empty set)
$\{1\} \quad$ (singleton set containing precisely the number 1)
$\{2,3\} \quad$ (Set with two elements)
$\mathbb{Z} \quad$ (The (infinite) set of integers)
\mathbb{R} (The (infinite) set of real numbers)

Basic operations on sets

$x \in S$ Is x contained in $S ?$
$x \notin S \quad$ Is x NOT containd in $S ?$
$A \cup B \quad$ Set union
$A \cap B$ Set intersection
$A \subseteq B \quad$ Subset relationship
$A \times B \quad$ Product set

True: $1 \in\{1\}$ and $1 \in \mathbb{Z}$
False: $2 \in\{1\}$ or $\pi \in \mathbb{Z}$

$$
\begin{aligned}
\{1\} \cup\{2\} & =\{1,2\} \\
\{1,3\} \cup\{2,3\} & =\{1,2,3\}
\end{aligned}
$$

$$
\{1\} \cap\{2\}=\emptyset
$$

$$
\{1,3\} \cap\{2,3\}=\{3\}
$$

True: $\emptyset \subseteq\{1\}$ and $\mathbb{Z} \subseteq \mathbb{R}$
False: $\{2\} \subseteq\{1\}$

$$
\begin{aligned}
& \{1,2\} \times\{3,4\} \\
& =\{\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle\}
\end{aligned}
$$

Relations

A relation R of arity n is a set of tuples of the form

$$
\begin{aligned}
& R=\left\{\left\langle v_{1}^{1}, v_{2}^{1}, \ldots, v_{n}^{1}\right\rangle\right. \\
& \left.\left\langle v_{1}^{k}, v_{2}^{k}, \ldots, v_{n}^{k}\right\rangle \quad\right\}
\end{aligned}
$$

- Notation:

$$
R\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow\left\langle x_{1}, \ldots, x_{n}\right\rangle \in R
$$

- Example: the less-than-or-equals relation over integers:

$$
(\leq) \subseteq \mathbb{Z} \times \mathbb{Z}
$$

- Relations of arity 2 are called binary relations:
- Notation:

$$
R(x, y) \Longleftrightarrow x R y
$$

Graphs

A (directed) graph \mathcal{G} is a tuple $\mathcal{G}=\langle\mathcal{N}, \mathcal{E}\rangle$, where:

- \mathcal{N} is the set of nodes of \mathcal{G}
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ is the set of edges of \mathcal{G}
- Often: Add function $f: \mathcal{E} \rightarrow X$ to label edges

Summary

- Tuples group a fixed number of items
- Sets represent a (possibly infinite) number of distinct elements
- We use them e.g. to represent possible analysis results
- Relations are sets of equal-sized tuples
- We mostly use them implicitly
- Similar to database tables, but:
- No duplicate rows
- No row order
- (Directed) Graphs represent nodes and edges between them
- Optional labels on edges possible
- We use them e.g. for program dependencies

