
EDAP05: Concepts of
Programming Languages
LECTURE 2: BACKGROUND

Christoph Reichenbach

Administrativa

I Course system is online now
I Make sure to visit
I We will sync against LADOK tomorrow
I You can form a group, then select group slot preferences
I After the deadline, we will assign you to groups

I Online discussions tbd: determined by poll today at (or
shortly after) 18:00

I Starting today with a quick recap

2 / 38

Language Evaluation Summary
Readability Writability Reliability

Simplicity + + +
Orthogonality + + +
Types + + +
Syntax Design + + +
Abstraction Support + +
Expressivity + +
Type Checking +
Exception Handling +
Restricted Aliasing +

(this is Robert W. Sebesta, “Concepts of Programming
Languages”, Table 1.1)
I Separate dimension: Cost
I Alternative (more detailed) model: Green and Petre,
“Cognitive Dimensions of Notation”

3 / 38

Restricted Aliasing

Java
public static <T> void
concat(List<T> lhs, List<T> rhs) {

for (int i = 0; i < rhs.size(); i++) {
lhs.add(rhs.get(i));

}
}

concat(a, a);

I Attach rhs to the end of lhs
I This code misbehaves (infinite loop) when passed the same
list for both parameters

I Aliasing: two different names mean the same thing
4 / 38

Computers as Systems

I Programs run on CPU
I Use RAM
I Access hardware
. . . but how?

5 / 38

Nexus 7 Mainboard

SDRAM memory
Processor + GPU
Voltage regulator
Wifi adapter
NFC chip
GPS receiver
Gyroscope, Accelerometer

Nexus 7™Mainboard. (courtesy of ifixit.com).

6 / 38

Functional Components (Nexus 7)
I SDRAM memory
I CPU
I GPU

I GPU compute units
I GPU graphics output

I Wifi adapter
I Wifi sender
I Wifi receiver

I NFC chip
I NFC sender
I NFC receiver

I GPS receiver
I Gyroscope
I Accelerometer

7 / 38

Computer Architecture

Memory
SDRAM

Input devices
Wifi receiver
NFC receiver
GPS receiver
Gyroscope
Accelerometer

Processors
CPU
GPU

Output devices
GPU output
Wifi sender
NFC sender

8 / 38

Computer Architecture: Abstracted

Memory

Input devices CPU Ouput devices

9 / 38

Data

user@host:~$ hexdump -C hello-world.o
. . .

0200 b8 01 00 00 00 bf 01 00 00 00 48 be 00 00 00 00 |..........H.....|
0210 00 00 00 00 ba 0d 00 00 00 0f 05 b8 3c 00 00 00 |............<...|
0220 bf 00 00 00 00 0f 05 00 00 00 00 00 00 00 00 00 |................|

0230 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 0a 00 e8 03 |Hello, World....|

0240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
. . .

Number (1000)
Machine language
String ("Hello, World\n")

Memory can contain all sorts of data, often freely mixed

10 / 38

CPU + RAM Interaction

Address Memory
0 e8 03 00 00 00 00 00 00
8 fe ff ff ff ff ff ff ff

CPU
$t0 = 0
$t1 = 0

I RAM behaves like array: maps addresses to bytes
I To operate on memory:

I CPU loads RAM contents into registers such as $t0, $t1
I CPU operates on registers
I CPU writes back registers into RAM

I Number of registers is very small, CPU can’t do much
without RAM!

11 / 38

Representing Numbers

I Numbers can be represented in a variety of ways
I Here: 64-bit little-endian two’s complement numbers

In-Memory Representation Hexadecimal Decimal
00 00 00 00 00 00 00 00 0x0 0
01 00 00 00 00 00 00 00 0x1 1
10 00 00 00 00 00 00 00 0x10 16
0a 00 00 00 00 00 00 00 0xa 10
0f 00 00 00 00 00 00 00 0xf 15
00 01 00 00 00 00 00 00 0x100 256
ff ff ff ff ff ff ff ff 0xffffffffffffffff −1
fe ff ff ff ff ff ff ff 0xfffffffffffffffe −2

12 / 38

Summary

I All data is kept in RAM or in registers
I RAM: lots of space, slow
I Registers: very few, fast

I Code is data: CPU executes instructions from RAM
I Code can decide freely how to represent

I Arrays
I Data structures
I Objects
I Algebraic values
. . .

I Here, we work with 64-bit little-endian two’s complement
numbers

13 / 38

Demo

14 / 38

Summary
I Machine Language: The CPU’s language
I Assembly Language: A “human-readable” encoding of
machine language in text form

I Memory addresses:
I Numbers!
I Reference code, data
I Point to different memory regions

C: square.c
int square(int x) {

return x * x;
}

square.o

0000000000000000 <square>:
0: 0f af ff imul edi,edi
3: 89 f8 mov eax,edi
5: c3 ret

Machine code
(hexadecimal)

Assembly code

compile disassemble
15 / 38

x86-64 memory addresses

I x86-64 uses 64-bit memory addresses
I Only lowest 48 bits are actually used
I At program start:

I Loader allocates some addresses
I Loads code, data into memory
I Jumps into loaded code to start execution

16 / 38

Conventional memory layout in
x86-64/Linux

Default allocation at program start:
I Operating system memory: not
accessible to user-space code

I Stack: function calls, some temporary
allocation

I Heap: temporary allocation
I Static memory: ‘global’ memory
I Code (also known as text): machine
code

Code

Static memory
Heap

Stack

OS Kernel

Layout requested by OS loader 17 / 38

Static Memory

I Used for:
I Global variables (e.g., in C)
I Constants (e.g., literal strings)

I Size of region:
I fixed by loader

18 / 38

Stack Memory

I Used for:
I Local variables
I Function calls, parameters
I Enabling recursion

I Size of region:
I On x86, stack begins at top of address space (by convention)
I Grown automatically by operating system

19 / 38

Heap Memory

I Used for:
I ‘catch-all’ when static/stack memory don’t suffice

I Region size:
I Arbitrary; grown on demand (explicit requests)

I Access via:
I Pointer or reference variables (more later!)

I Usage: Program must manage heap:
I Deallocate unused memory
I Search for unused space on allocation
I Grow heap (call operating system) if needed
I Defragment memory (Garbage Collection)

20 / 38

Address Space Conventions

I Conventions simplify interaction with remainder of
system

I Address space leaves substantial space for custom
memory usage
I Example here: we have mapped about 14 TiB

I Programs can freely allocate addresses for their
own purposes

I Address space used e.g. by:
I File access
I Dynamic library loader
I Threads

21 / 38

Pointers as in C, C++

a[0] a[1] a[2] a[3] z

10 20 30999 40 40

I int *z
z is a pointer to int

I z = &a[2]
Address operator: z takes address of a[2]

I *z
Dereference operator: accesses int value at memory
location, e.g. to write
*z = 999

22 / 38

Addresses are Just Numbers

int a[3] = {10, 20, 30};

main() {
int *a_ptr = &a[0]; // take address of a[0]
a_ptr = a_ptr + 1; // now: a_ptr = &a[1]
*a_ptr = 0; // now: a = {10, 0, 30}

}

I In systems languages like C, we can use RAM like a “map” /
associative array

I Addresses are “just” a kind of number
I Beware: easy to break your own code in subtle ways. . .

23 / 38

Summary

I Memory addresses are numbers, indices into address
space

I Address space split up into regions:
I Conventional regions (mostly pre-allocated by loader):

I Code (‘.text’): executable code
I Static memory: fixed-size read/write memory
I Stack: dynamically FILO memory

I Grows downwards on x86-64
I Heap: catch-all

I Explicit kernel requests needed to allocate, grow
I Used by malloc (C), new (C++, Java, . . .)

24 / 38

Program Execution

Assembly code Assembler
Machine Code
(on disk)

Loader

Machine Code in RAM

CPU

load

run on

I Assembler: trivial translation to
machine code

I Loader: copies machine code into
memory, initialises registers, jumps into
code

I CPU executes machine code directly

How about languages that the CPU can’t
execute directly?

25 / 38

Compilation

Assembly code Assembler
Machine Code
(on disk)

Loader

Machine Code in RAM

CPU

load

run on

Compiler

High-level
Code

load

run on

compile to

Examples: C, C++, SML, Haskell, FORTRAN, . . .

26 / 38

Compiling and Linking in C

High-Level
Program

.c

Compiler

library
.a
.so
.dll

Assembly
Program

.s

.asm

Object
File

.o

.obj

Linker?
Binary
Program

.exe

Assembler

Binary program is machine code, can be run by CPU
27 / 38

Separate vs. Whole-Program
Compilation

I Separate compilation:
I Most compiled languages allow compiling components/libraries
separately from each other

I Allows us to avoid compiling code that hasn’t changed
I Linker combines these components

I Often “hidden” in compiler and/or run-time system
I Whole-program compilation:

I Compile everything at once
I Can generate faster code
I Can generate better error reports
I Scales poorly
I Makes whole-program assumption that we know all code
that we need to execute

28 / 38

Interpretation

CPU

Interpreter

run on

High-level code read and execute

I Interpreter reads high-level code, then alternates:
I Figure out next command
I Execute command

Examples: Perl, Ruby, Bash, AWK, . . .

29 / 38

Hybrid Implementation

I Compilers compile to:
I Machine code
I Bytecode (Java, Python, C#, . . .)
I Other high-level languages (“transpilers”)

I Hybrid implementations of languages use
I One or more compilers
I One or more intepreter

30 / 38

Example: CPython (‘normal’ Python)

Python source code
i = 0
while i <= 10:

print i
i += 1

0 LOAD_CONST 1 (1)
3 STORE_FAST 0 (i)

6 SETUP_LOOP 31 (to 40)
9 LOAD_FAST 0 (i)
12 LOAD_CONST 2 (10)
15 COMPARE_OP 1 (<=)
18 POP_JUMP_IF_FALSE 39

21 LOAD_FAST 0 (i)
24 PRINT_ITEM
25 PRINT_NEWLINE

26 LOAD_FAST 0 (i)
29 LOAD_CONST 1 (1)
32 INPLACE_ADD
33 STORE_FAST 0 (i)
36 JUMP_ABSOLUTE 9

39 POP_BLOCK
31 / 38

Python execution (simplified)

I Compile: Python source code to bytecode
I Interpret:

I Load next Python bytecode operation
I Which instruction is it? Jump to specialised code that knows
how to execute the instruction:

I Load parameters to operation
I Perform operation
I Continue to next operation

Executing e.g. an addition in CPython takes dozens of
assembly instructions

32 / 38

Comparison: Compilation vs
Interpretation

Property Interpretation Compilation
Execution performance slow fast
Turnaround fast slow (compile & link)
Language flexibility high limited?

?) Compiler Optimisation Flexibility

33 / 38

Dynamic Compilation

I Idea: compile code while executing
I In theory: best of both worlds
I Practice:

I Difficult to build
I Memory usage tends to increase
I Performance can be higher than pre-compiled code

Examples: Java, Scala, C#, JavaScript, . . .

34 / 38

Summary

I Languages implemented via:
I stand-alone Compiler
I Interpreter
I Hybrid Implementation

I Part compiler, part interpreter (e.g., Python)
I May include: Dynamic Compiler (e.g., JVM)

I Trade-off between:
I Language flexibility
I CPU time / RAM usage

I Languages may have multiple implementations
I Example: CPython vs. Jython
I gcc vs. llvm/clang vs. MSVC

35 / 38

Compilers and Run-Time Systems

Separate language implementations into:
I Static components:

I Used before program executes
I Examples:

I Assemblers, linkers
I Compilers: gcc, javac, rustc, go build

I Dynamic components:
I Used while program executes
I Form the Run-Time System
I Examples:

I Memory management (automatic or otherwise)
I dynamic loading (e.g., dlopen in POSIX/C)
I dynamic compilation (e.g., eval in JavaScript, Python)
I adaptive optimisation (e.g., Java Virtual Machine)

36 / 38

Summary

I Languages 6= language implementations
I Implementation types:

I Interpreter, Compiler, Hybrid Implementation
I Hybrid implementation can use Dynamic Compilation
I Language implementation components:

I Static (e.g., compilers): run before program runs
I Dynamic (part of the run-time system): run while program runs

I Linking: connecting separately compiled program parts
I Whole-Program Assumption: we compile everything at
once (=⇒ no linker needed)

37 / 38

Next Week

I Syntax
I Variables, Binding, Scope
I Semantics
I Basic Expressions
I Primitive Types

Read the listed material, bring your questions!

38 / 38

