
EDAP05: Concepts of
Programming Languages
LECTURE 1: INTRODUCTION

Christoph Reichenbach



Contents

▶ Programming languages: structure and semantics
▶ Some language implementation considerations
▶ How to evaluate and compare languages
▶ Advanced material:

▶ Compilers: EDAN65
▶ Optimising Compilers: EDAN75
▶ Program Analysis: EDAP15
▶ Project Course: (EDAN70, EDAN90)

2 / 54



What we will not be covering

▶ Concurrency
▶ Software tools
▶ How to build a compiler

3 / 54



Course Structure

Information
▶ Today’s lecture
▶ Our Textbook
▶ Course Supplements

Interaction
▶ 2× per week: Class Sessions
▶ Exercises
▶ Online course system
▶ Zoom office hours
▶ Online discussion system (tbd)
▶ e-mail:

christoph.reichenbach@cs.lth.se
▶ TAs (faster replies!):

▶ Anton:
anton.risberg_alakula@cs.lth.se

▶ Idriss:
idriss.riouak@cs.lth.se

4 / 54



Skills

▶ Skill-based learning:
▶ Enumerated list of skills that you need to pass the exam
▶ Skill numbers connected to book, supplements, exercises

5 / 54



Conversational Classroom
▶ Future lectures are based on the textbook:

(+ Supplements)
▶ Read the sections of the book listed on the weekly

schedule, prepare your questions ahead of time!
▶ Lecture slots interactive Q&A

Bring your questions!
6 / 54



Online Systems

All accessible via http://cs.lth.se/EDAP05 :
▶ Schedule and Skillset overview

▶ What skills are you supposed to know?
▶ What lecture / reading material helps you with those skills?

▶ Group and Homework management via the Course Online
system (Online Tomorrow)

▶ Discussions?

7 / 54



Exercises
▶ Five weekly exercises

▶ Starting next week
▶ Available: Thursday 08:00
▶ Deadline: Wednesday 14:00 the week after
▶ One exception per group can be handed in late
▶ Submission: Course online system

▶ Done in groups of two (group selection in online system)
▶ Get help from TAs during labs (sign-up: online system)

Thu 08:15–10:00
Thu 13:15–15:00
Fri 15:15–17:00

▶ Need 50% on each assignment to be admitted to final exam
▶ Bonus on final exam if you get 80% or better right:

▶ 1% for 80% to < 90%
▶ 2% for 90% or more

▶ Late exceptions don’t count towards bonus points
8 / 54



Exam

15 January (Sat), 08:00–13:00, in Vic:2a / 2b
▶ All exam questions based on the skills from our skill list
▶ No more than 25% of points based on synthesis:

▶ Interaction between two or more skills
▶ Alternative option (only for exchange students whose

exchange will have ended by the time of the exam): Project
+ Report + Presentation

9 / 54



Week Overview

Mo Tu We Th Fr
Class
Session
15:15 E:A

Class
Session
15:15 V:A

New
Exercise
Labs

Labs

Mo Tu We Th Fr
Submit
exercise
solution

10 / 54



Why Study Programming Languages?

11 / 54



TIOBE Programming Language Index

Source: tiobe.com 12 / 54



TIOBE Programming Language Chart

13 / 54



Today

▶ What are programming languages?
▶ How can we describe languages?
▶ How can we compare language features?
▶ Exploring language features:

▶ Meaning
▶ Impact on language implementation

14 / 54



Purpose of a Programming Language?

15 / 54



Some Languages

16 / 54



Some Differences between Languages

17 / 54



Expressive Power

▶ Can language A compute more than language B?
▶ Church-Turing Thesis:

Anything that can be computed by some machine in a finite
number of steps can be computed by one of the following, and
vice-versa:

▶ Turing Machines
▶ Church’s untyped Lambda calculus
▶ Gödel’s generally recursive functions
▶ The Random Access Machine (Goldstine, Burks, von Neumann)
▶ The 110 cellular automaton
▶ Semi-Thue systems
▶ JavaScript

. . .
▶ Such languages are called Turing-Complete

18 / 54



Sub-Turing Languages

▶ Some languages are not Turing-Complete:
▶ Regular expressions
▶ SQL queries
▶ Backus-Naur Form (BNF)

19 / 54



General-Purpose Languages

General-Purpose
Languages
▶ Turing-Complete
▶ Suitable for arbitrary tasks

Domain-Specific
Languages
▶ Possibly Sub-Turing
▶ Focus on specialised applications

▶ Application-specific syntax
▶ Application-specific error

checking
▶ Application-specific optimisations

Domain-Specific Language example: Regular expression:
.*Test(ing)?$
▶ Match any string that ends in either Test or Testing
▶ Can be compiled into high-performance matching algorithm

20 / 54



Language Critique

▶ What is the best programming language?
▶ Best for what task?
▶ Measured by what criteria?
▶ Measurements obtained how?

(For most criteria, we don’t have good measurement tools!)
▶ Qualities of:

▶ the language
▶ the implementation(s)
▶ the available tooling
▶ the available libraries
▶ other infrastructure (user groups, books, . . . )

21 / 54



Criterion: Readability
▶ How easy is it to read software in the language?

A Program
++++++++[>++++[
>++>+++>+++>+<<
<<-]>+>+>->>+[<
]<-]>>.>---.+++
++++..+++.>>.<-
.<.+++.------.-
-------.>>+.>++.

▶ Program 1: √∑
v∈S

v 2

▶ Program 2:
Multiply each number in S with itself,
add up all the results to compute a
sum, and then give me the nonnegative
number that, when multiplied with
itself, is equal to that sum.

▶ Readability depends on:
▶ Problem domain (typical notation?)
▶ Reader’s background

▶ Multiple general characteristics help us understand readability
22 / 54



Simplicity

▶ Small number of features
▶ Minimal redundancy

Example
▶ Modula-3 language:

Design deliberately limited
to 50 pages

Counter-Example

Python
def d(x):

r = x[::-1]
return x == r

23 / 54



Orthogonality

▶ Features can be combined freely
▶ Minimal overlap between features

Example
▶ loops / conditionals may

contain other loops /
conditionals

▶ Many functional languages:
‘Everything is a value’

Counter-Example

C
// global variable section

float f1 = 2.0f * 2.0f;
float f2 = sqrt(2.0f); // error

24 / 54



Syntax Design
Example

C
if (cond)

print(a);
print(b);

⇓

Go
if cond {

print(a);
print(b);

}

Counter-Example

Fortran 95
program hello

implicit none
integer end, do
do = 0
end = 10
do do=do,end

print *,do
end do

end program hello

25 / 54



Data Types

▶ Datatypes can communicate intent
▶ Possibly enforce checking

Java
enum Color {

Red, Green, Blue
};
...
Color c = readColorFromUser();

26 / 54



Summary: Readability Characteristics

▶ Readability helps us understand code
▶ Core characteristics:

▶ Simplicity
▶ Orthogonality
▶ Syntax Design
▶ Datatypes

27 / 54



Criterion: Writability

▶ How easy is it to write software in the language?
▶ Characteristics that contribute to Readability

contribute to Writability
▶ Further criteria for Writability:

▶ Support for Abstraction
▶ over values (via variables)
▶ over expressions (via functions)
▶ over statements (via subprograms)
▶ over types. . .

▶ Expressivity

28 / 54



Criterion: Reliability

▶ How easy is it to write reliable software in the language?
▶ Criteria that contribute to Readability or Writability

also contribute to Reliability
▶ Further criteria:

▶ Type Checking
▶ The language prevents type errors (→ in two weeks)

▶ Exception Handling
▶ The language allows errors during execution to be systematically

escalated (→ later)
▶ Restricted Aliasing

29 / 54



Restricted Aliasing

Java
public static <T> void
concat(List<T> lhs, List<T> rhs) {

for (int i = 0; i < rhs.size(); i++) {
lhs.add(rhs.get(i));

}
}

concat(a, a);

▶ Attach rhs to the end of lhs
▶ This code misbehaves (infinite loop) when passed the same

list for both parameters
▶ Aliasing: two different names mean the same thing

30 / 54



Criterion: Cost

▶ Cost explains the investment needed to use a language:
▶ Training time
▶ Programming time
▶ Compilation time
▶ Run time
▶ Financial cost of special software
▶ Cost of limited reliability

▶ Maintenance time
▶ Insurance cost

31 / 54



Language Evaluation Summary
Readability Writability Reliability

Simplicity + + +
Orthogonality + + +
Types + + +
Syntax Design + + +
Abstraction Support + +
Expressivity + +
Type Checking +
Exception Handling +
Restricted Aliasing +

(this is Robert W. Sebesta, “Concepts of Programming
Languages”, Table 1.1)
▶ Separate dimension: Cost
▶ Alternative (more detailed) model: Green and Petre,

“Cognitive Dimensions of Notation”
32 / 54



Tomorrow

▶ Computer Systems Background
▶ Memory
▶ Compilation
▶ Run-Time Systems
▶ Primitive Types

Read the listed parts of the book, bring your questions!

33 / 54


