SDE Group: Opportunities for Students

Project Course 7.5hp (Ip3 and/or Ip4), can do twice
M.Sc. thesis
Amanuens Position Paid (yearly) posmon to support research

((1) Automatically Inspecting and > (2) Custom Bug Checkers with Logic Pro-

Transforming C/C++ code Ekgon gramming and Pattern Matching

(.

[(3) ExtendC: A C Compiler in JastAdd] [(4) ExtendJ for Java 9 and later

((5) Advanced Bug Checking in ExtendJ with) ((6) Advancing the TEAL language for teach-)
\the latest program analysis frameworks ing program analysis (EDAP15)

VAN

((7) Executable Natural Semantics: Fast Lan- ((8) Typing Rules: Fast Type System Proto-
| guage Prototyping in JastAdd typmg in JastAdd

m GANDER: Code Reviews & Eye Tracking

m WARA-SW: Making Bug Detectors Useful \\/\SP/Ef,

JaStadd '&EXTENDJ INTRACFG JAVADL /METADIL

Project Course / M.Sc. projects

m If you have not taken EDAP15 or EDANG5, some projects may be challenging

2 students per project (can work solo, but | recommend working in pairs)

m Project Course:

m Offered as EDANTO (first time) or EDAN90 (second time)

m 7.5 hp, credited in Ip4

m You can do both in sequence

m Actual coursework can take place in [p3 / Ip4

m Weekly supervision meetings

m Interested? Contact Christoph with e-mail subject line starting with "EDAN70" or
“EDAN90"

m M.Sc. thesis:

= 30 hp

m Can be continuation: try idea in project course, deepen in thesis

m Interested? Contact Christoph with e-mail subject line starting with “MSc Thesis Project”
m Weekly supervision meetings

m NB: Supervision meetings may be remote, esp. in Ip4

1. Inspecting and Transforming C/C++ Code

m Background

m DMCE ("Did My Code Execute”) is an Open Source tool for injecting C/C++ code into
(nearly) arbitrary C/C++ code

m Uses:

m Profiling (where am | spending execution time?)

m Logging

m Debugging

m Widely used (internally) at Ericsson

m Project Goal

m Read up on DMCE and similar tools (e.g., pin)
m Experiment with them to find strengths / weaknesses
m Build and run experiments: which tool works best for industrial tasks?

Suitable for:
Supervisor:
Prerequisites:
Tools:

M.Sc., EDAN70/EDAN90 -
Christoph Reichenbach, collaboration with Patrik Aberg (Ericsson) >
Basic C or C++ experience ERICSSON

DMCE (Ericsson)

https://github.com/PatrikAAberg/dmce

2. An intermediate language for MetaDL

m Background
m MetaDL allows writing bug checks for Java (“no string comparison with =="):

<:$x == $y:>, StringType($x)

m Combines syntax-based pattern matching with logical rules
m Limitation: the following syntactic check will not match e.g. 1 / (0+0):

<:$x/0:>
m Must use logical rules instead to model semantics (clunkier to write)
m Project

m Allow defining (abstract) semantic rules, e.g. $[z + 0] = $[z]
m Auto-generate logical rules from simplified syntax, e.g.: <:$x/$[0]:>

Suitable for: M.Sc., EDAN70/EDAN90

Supervisor: Alexandru Dura, Christoph Reichenbach
Prerequisites: Recommended: EDAN65, EDAP15, or equivalent experience
Status: One student has already expressed interest

Tools: MetaDL (github), research paper

https://github.com/lu-cs-sde/metadl
https://dl.acm.org/doi/10.1145/3485542

3. Initial ExtendC

m Build an initial (or complete) C compiler frontend in JastAdd
m Parsing

Name analysis

Type analysis

C Preprocessor: integrate directly in AST (reusing prior research)

Suitable for: M.Sc., EDAN70/EDANO9O (prototype only)

Supervisor: Christoph Reichenbach or tbd
Prerequisites: EDANG5 or other JastAdd experience
Tools: jaStadd

https://jastadd.cs.lth.se/web/

4. ExtendJ support for Java 9 and later

m Background

m ExtendJ is a Java compiler built in JastAdd
m Support for up to Java 8

m Project

m Add support for language features from Java 9-17
m Details depend on size of project (# of students etc.)

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: tbd
Prerequisites: EDANG5 or other JastAdd experience

Tools: *jaStadd, & EXTENDJ

https://jastadd.cs.lth.se/web/
http://extendj.org/

5. Supporting advanced program analysis for Java

m Background
m The SDE group’s ExtendJ compiler for Java includes a number of program analyses that
can find bugs and point to the problematic source code
m There are more advanced analyses available (SOOT, OPAL), but those analyse Java
bytecode
= Can't always find the right program locations

m Project

m Translate ExtendJ’s Java representation into SOOT or OPAL intermediate representations
m Examine how much better we can make bug reports from these framweorks

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach + tbd
Prerequisites: EDANG65, EDAP15, or equivalent experlence

Tools: *jaStadd '& EXTENDJ, 4°°t OprAL

https://jastadd.cs.lth.se/web/
http://extendj.org/
https://github.com/soot-oss/soot/
https://www.opal-project.de/

6. Extensions to the TEAL teaching language

= Background
m EDAP15 uses a special programming language, TEAL, to teach program analysis techniques
m TEAL is implemented in JastAdd
m To improve the course, we want to improve TEAL and its tooling
m Project
m Multiple options:

m Graph visualiser over source code (via JavaScript)
m JastAdd-based TEAL API cleanup
® Incorporate INTRACFG framework for data flow analysis

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach + tbd
Prerequisites: EDANG65, EDAP15, or equivalent experience

Tools: *jaStadd, TEAL

https://jastadd.cs.lth.se/web/
https://fileadmin.cs.lth.se/cs/Education/EDAP15/2020/web/exercises.html

7. JastAdd + Natural Samantics

Given Natural Semantics specifications, generate a JastAdd-based interpreter:

1 € nat 2 € nat ac€id a€id
_ = = = ar) ar|
Eyrig1 (") E@muzggzz)) E@[a»—>3]FalL3(V 2 E@[a»—>3]|—ai}3§:d(;))
EpF-1+2]3 Y o acid Egla—3]Fa + al6 :

EpFlet a=1+2ina +alb (fet:)

Suitable for: M.Sc., EDAN70/EDAN90

Supervisor: Christoph Reichenbach
Prerequisites: Recommended: EDAN65, EDAP15, or equivalent experience
Tools: jaStadd

https://jastadd.cs.lth.se/web/

8. JastAdd + Typing Rules

Given a set of typing rules, generate a JastAdd specification that performs type analysis

vV € nat

t-nat
true : Bool false : Bool v : Nat (t-nat)
e; : Nat e : Nat €1 : Bool & : Bool
t-eqg-nat t-eg-bool

e1 = e : Bool (t-eq-nat) e1 = e : Bool (t-eq-bool)
Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach
Prerequisites: Strongly recommended: EDAN65, EDAP15, or equivalent experience
Tools: jaStadd

https://jastadd.cs.lth.se/web/

Positions as Amanuens

Paid position (monthly salary, pension contribution etc.)
Typical commitment: 1 day per week

]
|

m Contract typically over one year

m Support ongoing research projects
]

Positions for two separate projects:

m GANDER (Emma Séderberg)
m WARA-SW (Christoph Reichenbach)

Contact us with e-mail subject line starting with “Amanuens position”

GANDER: Evolve eye tracker, understand SW dev. needs
GANDER: Gazing at Code Review(s)

oooooo

Why? What? -
Where? ... = |

ssssss

Fix bug with missing highlight on diffs that includes an

on diffs that includes an (... ...c:..|

@ Chromium Gerrit
m

Fies

WARA-SW: Build framework for evaluating software tools

m Which bug checkers work best for what?
m How can we integrate novel software tools easily into code review, IDEs, CI?

m How can we showcase software technology research across Sweden to Swedish
industry?

m WARA-SW is collaboration with: KTH, Ericsson, Saab, possibly more soon

by
(. __ LY ¥ . Core Software
> E @\'ﬁ' Engineering Tools

Topic Area: Software Tools
Courses

| o Topic ! G
! WPs WP8 WPz WPe6 b Ar:a X ! b X
! WP4 IDE Tools Review Tools || CI Tools . ' C o TOPiC Co |
| ' 'Correct . ! Coa
' P ', Area: bt
| i by Con- ' tbd Lo
| WP9 \istruction] | Lo

' (Saab)

https://wasp-sweden.org/research/research-arenas/wara-sw/

