
SDE Group: Opportunities for Students
Project Course 7.5hp (lp3 and/or lp4), can do twice
M.Sc. thesis
Amanuens Position Paid (yearly) position to support research

(1) Automatically Inspecting and
Transforming C/C++ code

(2) Custom Bug Checkers with Logic Pro-
gramming and Pattern Matching

(3) ExtendC: A C Compiler in JastAdd (4) ExtendJ for Java 9 and later

(5) Advanced Bug Checking in ExtendJ with
the latest program analysis frameworks

(6) Advancing the TEAL language for teach-
ing program analysis (EDAP15)

(7) Executable Natural Semantics: Fast Lan-
guage Prototyping in JastAdd

(8) Typing Rules: Fast Type System Proto-
typing in JastAdd

Amanuens:
Amanuens:

GANDER: Code Reviews & Eye Tracking
WARA-SW: Making Bug Detectors Useful

ExtendJ IntraCFG JavaDL/MetaDL

Project Course / M.Sc. projects

If you have not taken EDAP15 or EDAN65, some projects may be challenging
2 students per project (can work solo, but I recommend working in pairs)
Project Course:

Offered as EDAN70 (first time) or EDAN90 (second time)
7.5 hp, credited in lp4
You can do both in sequence
Actual coursework can take place in lp3 / lp4
Weekly supervision meetings
Interested? Contact Christoph with e-mail subject line starting with “EDAN70” or
“EDAN90”

M.Sc. thesis:
30 hp
Can be continuation: try idea in project course, deepen in thesis
Interested? Contact Christoph with e-mail subject line starting with “MSc Thesis Project”
Weekly supervision meetings

NB: Supervision meetings may be remote, esp. in lp4

1. Inspecting and Transforming C/C++ Code
Background

DMCE (”Did My Code Execute”) is an Open Source tool for injecting C/C++ code into
(nearly) arbitrary C/C++ code
Uses:

Profiling (where am I spending execution time?)
Logging
Debugging

Widely used (internally) at Ericsson
Project Goal

Read up on DMCE and similar tools (e.g., pin)
Experiment with them to find strengths / weaknesses
Build and run experiments: which tool works best for industrial tasks?

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach, collaboration with Patrik Åberg (Ericsson)
Prerequisites: Basic C or C++ experience
Tools: DMCE (Ericsson)

https://github.com/PatrikAAberg/dmce

2. An intermediate language for MetaDL
Background

MetaDL allows writing bug checks for Java (“no string comparison with ==”):
<:$x == $y:>, StringType($x)

Combines syntax-based pattern matching with logical rules
Limitation: the following syntactic check will not match e.g. 1 / (0+0):

<:$x/0:>

Must use logical rules instead to model semantics (clunkier to write)
Project

Allow defining (abstract) semantic rules, e.g. $[z + 0] ⇒ $[z]
Auto-generate logical rules from simplified syntax, e.g.: <:$x/$[0]:>

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Alexandru Dura, Christoph Reichenbach
Prerequisites: Recommended: EDAN65, EDAP15, or equivalent experience
Status: One student has already expressed interest
Tools: MetaDL (github), research paper

https://github.com/lu-cs-sde/metadl
https://dl.acm.org/doi/10.1145/3485542

3. Initial ExtendC

Build an initial (or complete) C compiler frontend in JastAdd
Parsing
Name analysis
Type analysis
C Preprocessor: integrate directly in AST (reusing prior research)

Suitable for: M.Sc., EDAN70/EDAN90 (prototype only)
Supervisor: Christoph Reichenbach or tbd
Prerequisites: EDAN65 or other JastAdd experience

Tools:

https://jastadd.cs.lth.se/web/

4. ExtendJ support for Java 9 and later

Background
ExtendJ is a Java compiler built in JastAdd
Support for up to Java 8

Project
Add support for language features from Java 9–17
Details depend on size of project (# of students etc.)

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: tbd
Prerequisites: EDAN65 or other JastAdd experience

Tools: , ExtendJ

https://jastadd.cs.lth.se/web/
http://extendj.org/

5. Supporting advanced program analysis for Java

Background
The SDE group’s ExtendJ compiler for Java includes a number of program analyses that
can find bugs and point to the problematic source code
There are more advanced analyses available (Soot, Opal), but those analyse Java
bytecode
=⇒ Can’t always find the right program locations

Project
Translate ExtendJ’s Java representation into Soot or Opal intermediate representations
Examine how much better we can make bug reports from these framweorks

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach + tbd
Prerequisites: EDAN65, EDAP15, or equivalent experience

Tools: , ExtendJ, , Opal

https://jastadd.cs.lth.se/web/
http://extendj.org/
https://github.com/soot-oss/soot/
https://www.opal-project.de/

6. Extensions to the TEAL teaching language

Background
EDAP15 uses a special programming language, Teal, to teach program analysis techniques
Teal is implemented in JastAdd
To improve the course, we want to improve Teal and its tooling

Project
Multiple options:

Graph visualiser over source code (via JavaScript)
JastAdd-based Teal API cleanup
Incorporate IntraCFG framework for data flow analysis

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach + tbd
Prerequisites: EDAN65, EDAP15, or equivalent experience

Tools: , Teal

https://jastadd.cs.lth.se/web/
https://fileadmin.cs.lth.se/cs/Education/EDAP15/2020/web/exercises.html

7. JastAdd + Natural Samantics

Given Natural Semantics specifications, generate a JastAdd-based interpreter:

1 ∈ nat
E∅ ⊢ 1 ⇓ 1 (natl) 2 ∈ nat

E∅ ⊢ 2 ⇓ 2 (natl)

E∅ ⊢ 1 + 2 ⇓ 3 (addl) a ∈ id

a ∈ id
E∅[a 7→ 3] ⊢ a ⇓ 3

(varl) a ∈ id
E∅[a 7→ 3] ⊢ a ⇓ 3

(varl)

E∅[a 7→ 3] ⊢ a + a ⇓ 6
(addl)

E∅ ⊢ let a = 1 + 2 in a + a ⇓ 6 (letl)

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach
Prerequisites: Recommended: EDAN65, EDAP15, or equivalent experience

Tools:

https://jastadd.cs.lth.se/web/

8. JastAdd + Typing Rules

Given a set of typing rules, generate a JastAdd specification that performs type analysis

true : Bool false : Bool
v ∈ nat
v : Nat (t-nat) e1 : Nat e2 : Nat

e1 + e2 : Nat (t-add)

e1 : Nat e2 : Nat
e1 = e2 : Bool (t-eq-nat) e1 : Bool e2 : Bool

e1 = e2 : Bool (t-eq-bool) e1 : Bool e2 : τ e3 : τ
if e1 then e2 else e3 : τ

(t-if)

Suitable for: M.Sc., EDAN70/EDAN90
Supervisor: Christoph Reichenbach
Prerequisites: Strongly recommended: EDAN65, EDAP15, or equivalent experience

Tools:

https://jastadd.cs.lth.se/web/

Positions as Amanuens

Paid position (monthly salary, pension contribution etc.)
Typical commitment: 1 day per week
Contract typically over one year
Support ongoing research projects
Positions for two separate projects:

GANDER (Emma Söderberg)
WARA-SW (Christoph Reichenbach)

Contact us with e-mail subject line starting with “Amanuens position”

GANDER: Evolve eye tracker, understand SW dev. needs
GANDER: Gazing at Code Review(s)

Why? What?
Where? ...

WARA-SW: Build framework for evaluating software tools

Which bug checkers work best for what?
How can we integrate novel software tools easily into code review, IDEs, CI?
How can we showcase software technology research across Sweden to Swedish
industry?
WARA-SW is collaboration with: KTH, Ericsson, Saab, possibly more soonWork Packages

.java .cc x
Core Software
Engineering Tools

WP5
WP4

WP9
Courses

WP8
IDE Tools

WP7
Review Tools

WP6
CI Tools

WP3: Workshops

WP2: Cluster Computing and Cloud Support

WP1: Central Contact Point and Management

Topic Area: Software Tools

Topic
Area:
Correct
by Con-
struction
(Saab)

Topic
Area:
tbd

⋮

https://wasp-sweden.org/research/research-arenas/wara-sw/

