
Handout I: Continuations
Christoph Reichenbach

December 9, 2021

Perhaps the first abstraction that programmers learn are variables, constructions that can bind to values (i.e.,
the results of computations). We can use variables in most places that expect a literal value or an expression1,
including the middle of computations such as PRINT x + 1.

Continuations allow us to abstract over the opposite of values: they allow us to abstract over the context in
which values get used. For example, consider the following Mystery program fragment:

1 VAR x : INT;
2 VAR y : INT
3 BEGIN
4 ...
5 PRINT x + 1;
6 PRINT y
7 END

There are several continuations in this program. Let us consider first the continuation in line 6, at variable y.
Since a continuation is the opposite abstraction of a variable, this means that the continuation at variable y is the
code that uses y and then continues — in this case, the continuation would be ‘take an integer value, PRINT that
value, and then END the program’.

Another continuation would be in line 5. This second continuation would be ‘take an integer value, add 1 to
it, PRINT the result, then PRINT y, and finally END the program.

Continuations were originally a theoretical concept for modelling jumps and loops in programs, and, later,
for modelling exceptions and cooperative forms of concurrency. Today, they are first-class concepts in Scheme,
Racket, Ruby, Haskell (albeit only in bounded form), and (as language extensions) the two main implementations
of Standard ML, SML/NJ and Mlton.

In SML, we can access continuations by opening the following module:

open SMLofNJ.Cont

This imports a number of definitions, most prominently:

...
type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b
...

Here, the type α cont describes a continuation for a value of type α. In our introductory example, α would
be INTEGER. The two main operations on continuations are:

• callcc, which is short for ‘call with current continuation’. callcc takes a single argument f of type
α cont → α. Here, f is a function that receives the current continuation, meaning the continuation c of
what happens to the return value of callcc (f). We can return from callcc (f) in two ways:

1There are a few limitations in practice, such as e.g. C++’ const_expr or Ada and Mystery’s subrange type bounds.

1



1. By evaluating f(c), where c is the ‘current continuation’ around callcc (f). In this case, the return
value of f(c) also becomes the return value of callcc(f).

2. After starting to evaluate f(c), by throwing the current continuation c from any point in the program.
To do so, we rely on the second operation:

• throw, which throws a continuation (analogously to raising an exception). throw has the type

throw : α cont → α → β

meaning that it takes two parameters: a continuation that expects a value of type α, and a value of type
α to plug into that continuation. throw claims to return type β; however, throw never actually returns
anything, since it jumps to a different place in the program. Thus, the type β here only serves to tell the
type checker that ‘whatever type you want is fine’.

As a first example of callcc, consider the following program:

1 + callcc (fn c => 2 + 0)

This program computes the value 3. We are not making any use of continuations yet: while callcc here
creates a continuation that we bind to variable c : int cont, we simply ignore this continuation and compute 2 +
0. callcc(fn c => 2 + 0) then takes the result of this computation (2) and returns it unchanged.

Let us now try a more interesting example that actually makes use of c:

1 + callcc (fn c => 2 + (throw c 0))

This program computes the value 1. Here, we use callcc again to create continuation c. c represents the
orange part of the code: ‘add 1 to some int value returned from callcc’.

Within the body of the continuation, we compute the expression ‘ 2 + (throw c 0)’, but the blue part of
the code never gets executed: as soon as execution runs into throw c 0, it takes the value 0 and plugs it into
the continuation that we have bound to c, i.e., the orange part of the code. Thus, we only compute 1 + 0,
explaining the result of 1.

These kinds of semantics are tricky to represent in natural semantics rules, since they are intrinsically non-
local, but researchers first came up with them in an attempt to give a formal semantics to language constructs
like goto that can jump back and forth within code.

1 Letting Continuations Escape
In the above example, we are using the continuation like an exception, with the callcc operation acting like an
exception handler.

However, continuations are more general than exceptions — they can jump backward and forward through
the program. To see that, we have to let the exceptions escape from within the callcc operation. This is not
entirely straightforward — for instance, we can’t write

val cont = callcc (fn c => c) (* Error *)

because the type system can’t infer a type for cont. Recall that callcc : (α cont → α) → α. In the above
code, we pass an identity function to callcc, which means that we are asking the type inference system to find
a type α = α cont, but such a type does not exist2, so SML will give a type error for the above.

In other words, if we want to return a continuation from callcc, we have to pack it into another type that
hides the α cont type. In SML, we can accomplish this only through an auxiliary datatype.

For example, consider the code in Figure ??. Here, we package the continuation c into the datatype clistmaker,
along with the number 100 and the empty list. As before, callcc initially just returns the packaged result C(100,
[], c). In the case deconstruction on line 5, wewill thusmatch the branch on line 7. This branch then throws the

2In most languages with type inference; Ocaml actually allows such ‘cyclic types’.

2



1 open SMLofNJ.Cont;
2
3 datatype clistmaker = C of int * int list * clistmaker cont;
4
5 case callcc (fn c => C(100, [], c)) of
6 C(0, list , _) => list
7 | C(i, list , c) => throw c (C(i - 1, i :: list , c));

Figure 1: Building lists with continuations.

exception — effectively jumping back to line 5 with an updated value for the clistmaker, namely C(99, [100],
c). This process repeats until we have built a list containing all numbers from 1 to 100, at which point we return
the list (line 6). The continuation c here consists of the code in orange:

case callcc (fn c => C(100, [], c)) of
C(0, list, _) => list

| C(i, list, c) => throw c (C(i - 1, i :: list, c));
with the entry point into the continuation again being the call to callcc.

2 Extended Example
Wehave now seen how to use continuations to skip execution and how to use them to implement loops. However,
continuations also allow us to travel up and down the call stack. To see this, we look at amore involved example —
evaluating a program in a simple language:

datatype value = STRING of string
| INT of int

datatype program = PLUS of program * program
| VALUE of value

Here, the intuition is that PLUS will add INTs and concatenate STRINGs, but we want to treat it as an error
if PLUS tries to combine a INT and a STRING. We can describe an evaluation function (without continuations) as
follows:

fun eval (VALUE v) = v
| eval (PLUS(lhs , rhs)) = (case (e lhs , e rhs) of

(STRING s1, STRING s2) => STRING (s1 ^ s2)
| (INT i1, INT i2) => INT (i1 + i2)
| _ => raise Exception

)

Here, any type error will raise an exception.
We can rewrite this error handling with continuations. In Figure ??, we implement error handling again, but

this time we add automatic recovery: if we run into an error while evaluating, we jump out of the evaluation
to error handling code (line 20). This error handling code then provides a default replacement value and jumps
back into the middle of the computation that we just aborted.

In more detail, the eval function now takes an extra parameter, an error handler of type error. When we
find an attempt to add a string and an integer, we call throw error_handler (line 10) and also pass along a
continuation to the current state of the evaluation, rc.

In try_eval we generate this error_handler via callcc in line 18. In the default (INIT) case, we extract
the continuation to line 18 into handler and pass it to eval in line 21.

3



1 datatype error = ERROR of value cont (* encountered an error *)
2 | INIT of error cont
3
4 fun eval (error_handler : error) (expr) =
5 let fun e(VALUE v) = v
6 | e(PLUS(lhs , rhs)) = (case (e lhs , e rhs) of
7 (STRING s1, STRING s2) => STRING (s1 ^ s2)
8 | (INT i1, INT i2) => INT (i1 + i2)
9 | _ =>
10 let fun recover rc = throw error_handler (ERROR rc)
11 in callcc (recover) (* callcc -recover *)
12 end
13 )
14 in e expr
15 end
16
17 fun try_eval (expr , default_value) =
18 let val handler = case callcc (fn x => INIT (x)) of (* callcc -handle *)
19 INIT (handler) => handler
20 | ERROR (recover) => throw (recover) (default_value)
21 in eval (handler) (expr)
22 end

Figure 2: Error handling with automatic recovery.

If eval encounters an error and throws the error handler at line 10, we thus jump back to line 18, this
time taking the ERROR branch (line 20). At this point, we know that an error occured and can handle this error
however we see fit. In the code above, we throw the recover continuation, effectively jumping back to line 11
while passing along a default value. Since continuations preserve the full execution context (i.e., the call stack
with all activation record instances), we can then continue executing.

For a more concrete example, let us call try_eval to evaluate (3 + (4 + "foo")), which should give us an
error during the addition (4 + "foo"):

val z = try_eval(PLUS(INT 3, PLUS(INT 4, STRING "foo")), INT 0)

We also specify a default value of 0. During execution, try_eval now calls eval with the continuation
error_handler and the expression to evaluate. eval calls e, which calls itself recursively several times. Figure ??
shows the calls and returns.

When we evaluate e (PLUS(INT 4, STRING "foo")), e recursively evaluates e (INT 4) and e (STRING
"foo"), successfully. However, the return values have mismatching types, so we enter the error handling code
in line 10. This code throws error_handler while passing along the continuation rc. error_handler, which is
the continuation following callcc in line 18, now takes over to perform error recovery: it jump back to recover
with the user-specified default value INT 0. This default value arrives in line 11, in place of the call to callcc,
and from there is returned to the caller (i.e., it becomes the return value of e (PLUS(INT 4, STRING "foo")).
We then conclude evaluation as usual.

Our try_eval function implements just one possible error handling strategy that isn’t particularly smart.
For instance, if our default value were STRING "hello", then plugging this default value into our example above
would trigger another type error. Since continuations preserve the entirety of the execution context, we could
write an error handler that tries out different values until it finds one that doesn’t cause any errors further down,
or one that minimises the number of errors.

Below is yet another (and much simpler) alternative approach, in function eval_or_fail that immediately
returns NONE on failure, or otherwise lists a successful evaluation result into SOME result, exploiting the option

4



try_eval(PLUS(INT 3, PLUS(INT 4, STRING "foo")), INT 0)

eval (handler) (PLUS(INT 3, PLUS(INT 4, STRING "foo")))

e (PLUS(INT 3, PLUS(INT 4, STRING "foo")))

e (INT 3) e (PLUS(INT 4, STRING "foo"))

e (INT 4) e (STRING "foo")

STRING "foo"INT 4

INT 3 INT 0

INT 3

INT 3

callcc-handle

callcc-recover

ERROR rcINT 0

call
return

continuation

Figure 3: Calls and returns for our error handling example.

type constructor in SML.

fun eval_or_fail (expr) : value option =
case callcc (INIT) of

INIT (c) => SOME (eval (c) (expr))
| ERROR (_) => NONE

5


