Handout G: Nested Subprograms

Christoph Reichenbach

November 18, 2021

Subprograms allow us to encapsulate and reuse functionality. However, sometimes that functionality needs
to be contextual, i.e., depend on properties that we would prefer to not have to pass around as parameters. One
language feature that can help here are nested subprograms. If a subprogram ¢ is nested within subprogram f,
then g may access the referencing environment of f at the point at which it appears.

For example, consider a Python subprogram that parses a file. The subprogram should collect all errors in
that file, but there may be many different types of errors. To simplify collecting errors, we introduce a nested
helper subprogram report_error in the code below:

def parse_file(filename):

file = open(filename, ’'r’)
errors = []
line_nr =1

A nested subprogram:
def report_error(message):
errors.append(filename + ’, line * + str(line_nr) + ’: ~ + message)

for line in file.readlines():

if
5 ,
report_error (’syntax error’)
if ...:
report_error(’some other error’)
line_nr = line_nr + 1

Note that report_error looks and works like a regular subprogram, except that it is defined within another
subprogram and reads the local variable line_nr and the parameter filename, and updates the list of errors errors,
all of which are part of the referencing environment of its surrounding (or outer) subprogram parse_file.

To write the same code without nested subprograms, we have to pass all of the above variables explicitly:

NOT a nested subprogram
def report_error(errors, filename, line_nr, message):
errors.append(filename + ’, line ° + str(line_nr) +

5

+ message)

def parse_file(filename):

file = open(filename, ’'r’)
errors = []
line _nr =1

for line in file.readlines ():
if
report_error(errors, filename, line_nr, ’syntax error’)

if :

report_error(errors, filename, line_nr, ’some other error’)

Nested subprograms are supported e.g. in Scala, JavaScript, Go, Haskell, Ocaml, and Scheme.

