
Handout C: Referencing Environments

Christoph Reichenbach

November 12, 2021

In the definition of the language LetAdd in Handout A, we encountered natural (operational) semantics

evaluation rules of the form

E ⊢ p ⇓ n

that evaluate a program p to a value n. Here, E was the (environment that helped us interpret the meaning

of variables. For example, in the program

let x = 1 in x + x

we would map the variable x to a value 1 to form the environment {x 7→ 1} and then evaluate the expression

x + x with

{x 7→ 1} ⊢ x + x

These environments are closely connected to the concept of scopes that we will introduce later. We here

highlight what they like in realistic programming languages.

1 Referencing Environments
Consider the following Java code snippet:

1 public s t a t i c boolean i s E qu a l (in t a , in t b) {
2 return a == b ;
3 }

In this function, line 2 checks whether variables a and b are equal. As we discussed in Handout B, the exact

comparison that Java performs can depend on the types of a and b. However, in our environments we have so

far only mapped variable names to variable values, meaning that we would not be able to model this behaviour.

For a general-purpose language, environments thus map variable names not just to values, but also to variable

type and address information (and to any other bindings used by the language, e.g., whether the variable is final
in Java).

We call these types of environments referencing environments. While we can model them as a mapping

from variable names to a complete description of all bindings, it is usually easier to think of them as a map from

variable names to variable declaration sites (cf. EDAN65), as we will see in the following section.

1.1 Shadowing
In larger programs, we often encounter the same variable name with multiple different meanings. For example,

consider the following C code:

1 in t f (in t z) {
2 in t x = 0 ;
3 in t y = 0 ;

1

4 i f (z > 0) {
5 in t x = 1 ;
6 y = x ;
7 } e l se {
8 in t z = 2 ;
9 x = z ;
10 }
11 return x + y ;
12 }

This code defines multiple variables with the names x and z, so that at different lines in the program, the

referencing environment maps x and z to different variables. The above code is equivalent to the code below,

in which all variable names are indexed by the line that contains the variable’s declaration; e.g., x5 means “the

variable declared at line 5 that has the name x”:

1 in t f (in t z1) {
/ / Environment E2 = {x 7→ x2, y 7→ y3, z 7→ z1}

2 in t x2 = 1 0 ;
3 in t y3 = 0 ;
4 i f (z1 > 0) {

/ / Environment E5 = {x 7→ x5, y 7→ y3, z 7→ z1}
5 in t x5 = 1 ;
6 y3 = x5 ;
7 } e l se {

/ / Environment E8 = {x 7→ x2, y 7→ y3, z 7→ z8}
8 in t z8 = 2 ;
9 x2 = z8 ;
10 }

/ / Environment E2 = {x 7→ x2, y 7→ y3, z 7→ z1}
11 return x2 + y3 ;
12 }

The figure also shows the referencing environment at four different points in the program. Within a C func-

tion like our function f, the environment only changes when we enter or exit a block (delimited by curly braces,

{ . . . }). Thus, we have three referencing environments: E2, E5, and E8, one per block. In each environment we

represent the bindings by the variable declaration site, e.g., x5.
We use the term “binding” not only to refer to the assignment of properties of a variable (storage location,

type etc.), but also to refer to the mapping of a name to a variable in an environment, like x 7→ x5. This justifies
Sebesta’s use of the term in Section 5.3.1 in the textbook. Note that some variables have no names, and other

variables may have multiple names, depending on the semantics of the programming language.

As we see, the binding of e.g. x to x5 is temporary and only extends from line 5 to line 6; in those lines, this

binding shadows the binding x 7→ x2. Thus, the assignment in line 6 will assign the value 1 to y.

1.2 Implicit Environment Bindings
Most languages pre-initialise the referencing environment with some existing definitions. For example, the awk

language pre-defines the variable ARGV as an array that holds all parameters passed to the current program.

As we will see later, referencing environments also usually contain bindings for functions and other lan-

guage constructs (types, classes etc.). For example, the initial environment in Python includes several predefined

functions, such as len, which computes the length of a list.

2

