
Handout A: Introduction to Natural Semantics
Revision 2

Christoph Reichenbach

November 8, 2021

Formal semantics allow us to describe the meaning of programs precisely and
concisely. In this course we only discuss Natural Semantics, also known as Big-Step
Operational Semantics. These semantics are closely related to the concept of program-
ming language implementation by interpretation.

Natural semantics assume that we know the syntax of our language. In the fol-
lowing, we assume that we have a BNF specification of the grammar, such as the one
in Figure 1. This language, DivAdd, is syntactically ambiguous (e.g., there are two
different ways to parse 1 + 2 div 3). This syntactic ambiguity is an important
concern for the design of the grammar, but for the definition of semantics (i.e., for
this handout), we assume that any ambiguities has been resolved (e.g., by assigning
precedence to the operators). We don’t discuss the relevant syntactic mechanisms
here; instead we will use parentheses to disambiguate as needed, e.g., 1 + (2 div 3)
(even though the BNF may not make such parentheses explicit).

1 A Meta-Language for Describing Semantics

Natural semantics is a meta-language (cf. Sebesta, Section 3.3.1.3) for describing the
behaviour of an object language. The object language here is the programming lan-
guage that we want to describe (e.g., DivAdd).

We will now use the English language as a meta-language to describe the be-
haviour of Natural Semantics, as an object language, so there are three layers to our
discussion.

Natural semantics relates a program to the result that the program computes. For
simplicity, we begin with programs that compute numbers; later we will study pro-
grams that update variables and sketch how we can read input and print output.

The key idea behind natural semantics is the evaluation relation (⇓), which states
the relation between a program p and the program’s result v:

p ⇓ v

We read this as ‘p evaluates to v’.
Here, p and v are metavariables, that is, variables in the meta-language. We will

typeset them as p and v. p is a variable that can contain any input program, and v is
a variable that can contain any result that the language might compute.

1



⟨expr⟩ −→ nat
| ⟨expr⟩+⟨expr⟩
| ⟨expr⟩div⟨expr⟩

Figure 1: Syntax of our language DivAdd. Here nat is a terminal symbol that can be
a textual representation of any natural number.

Let us begin with an (exceedingly simple) programming language:

⟨W⟩ −→ ett | två | tre

This language allows only three programs, each of which consists of a single word
in the Swedish language. We can now define its semantics by the following rules:

ett ⇓ 1 två ⇓ 2 tre ⇓ 3

What we have now done is to list all the different programs in the language and
explain what this program should mean, connecting program and output by the ⇓
symbol.

We see that the evaluation relation maps input programs in the object language
W to natural numbers in N.

In general, the terms to the left of ⇓ are terms in the object language, i.e., the
language we are trying to describe. The terms on the right-hand side of ⇓ are in
some ‘result language’ that our semantics computes. These can be any mathematical
objects. In some cases the object language and the output language can even overlap.
For example, in a pocket calculator language, the output might be in the set of rational
numbers, but rational numbers might also be part of the input language. That is, both
the object language and the meta-language may make use of a shared concept (such
as the rational numbers).

1.1 Ambiguity

Note that ⇓ is, in general, a relation and not a function. We can see what that means
in the following language:

⟨Q⟩ −→ eins | zwei | ?

With the semantics given below:

eins ⇓ 1 zwei ⇓ 2 ? ⇓ 0 ? ⇓ 3

Here, we have two specifications for the ? symbol: one that evaluates it to 0 and
one that evaluates it to 3. This means that the semantics is ambiguous.

While we could use ambiguous semantics to model nondeterminism, we gener-
ally want to avoid such ambiguity. When formally defining programming languages,
language designers take great care to avoid such ambiguity or sometimes develop
proofs to show that the language ‘is confluent’ (i.e., different hypothetical paths of

2



computation ‘flow together’ at the end). In this course we require that semantics are
not ambiguous, and we can usually ensure this by carefully checking that left-hand
side of one ⇓ in our semantics description doesn’t overlap with the left-hand side of
another ⇓ — or, if it does, that these cases will yield the same right-hand side.

1.2 Conditional Rules

Programming languages with a finite number of input programs aren’t usually very
interesting. Let us instead consider a language that allows an infinite number of input
programs, such as DivAdd, given in Figure 1.

As in our previous examples, let us try to define the semantics of each of the
different branches of our grammar separately.

First, consider input programs that have the form nat. That is, they are a string of
digits of a form that represents a natural number, e.g., 0 or 1 or 65536.

If we were writing a language implementation, we would now have to translate
this character string into a natural number. For instance, we can imagine a function
asNat that takes in a character string and translates it into a natural number (similar
to atoi() in C or int() in Python or Integer.parseInt() in Java):

n ⇓ asNat(n) but only if n ∈ nat

Here again n is a Metavariable, i.e., a variable in our meta-language, Natural Se-
mantics, as opposed to a program variable in DivAdd. We don’t have any program
variables in DivAdd, so there is no ambiguity as to what kind of variable it is.

Since we are only describing the case wheren is a string of digits (and not anything
that contains a + or div symbol), our rule above adds the requirement that n ∈ nat, in
other words, that n must be an element of the set of strings of digits that we’ve called
nat.

These kinds of preconditions are very common, so we have a simplified notation
for them:

n ∈ nat
n ⇓ asNat(n)

The meaning of this rule is exactly the same as for our previous rule. This ‘infer-
ence rule’ notation allow us to compactly capture preconditions (or premises) on a bar
above our semantics specification.

Often, semantics specifications try to avoid excessive formal correctness in favour
of simplicity. In these specifications, the writer might omit the asNat function by
arguing that ‘separating between natural numbers and their textual representation is
overly pedantic, as long as there is no ambiguity’. Such an author might write the
above rule as follows:

n ∈ nat
n ⇓ n

3



1.3 Recursion

The next construct in DivAdd is ⟨expr⟩+⟨expr⟩. Intuitively, we want this construct to
represent addition. As a first attempt, we might try the following rule1:

n1 ∈ nat n2 ∈ nat
n1+n2 ⇓ asNat(n1)+ asNat(n2)

This rule allows us to add up two numbers. However, it doesn’t capture all the
cases that ⟨expr⟩+⟨expr⟩ describes, only the case nat+nat. For example, if we try to
evaluate (1 + 2)+(3 + 4), our rule doesn’t match, since it will set n1 = (1 + 2),
which will then fail the check n1 ∈ nat.

Instead, what we would like is to first compute the result of (1 + 2), and then use
that result, i.e., to recurse. Fortunately, nothing prevents us from having the definition
of ⇓ recursively depend on itself:

e1 ⇓ n1 e2 ⇓ n2

e1+e2 ⇓ n1 + n2

Note that we now have four metavariables — e1 and e2, which can bind to any
⟨expr⟩, and n1 and n2, which bind to evaluation results (natural numbers).

1.4 Completeness

Finally, let us define ⟨expr⟩ div ⟨expr⟩, which we intend as division:

e1 ⇓ n1 e2 ⇓ n2

e1 div e2 ⇓ ⌊n1
n2

⌋

Here, we borrow the notation ⌊n1
n2

⌋ from arithmetic to mean ‘n1 divided by n2,
rounded down’.

While this rule seems superficially satisfactory, it has one omission: the meaning
of the input program 1 div 0 ⇓ . . . is undefined, because x

0 is undefined in arith-
metic.

Such implicit omissions (or more explicit omissions, such as forgetting to write
down a rule) can leave the definition of a language to be incomplete.

Some languages (like C and C++) deliberately include incompleteness in their lan-
guage definitions, arguing that it gives more flexibility to language implementations,
though this style of language definition is no longer popular today.

Most languages instead aim for a complete language definition. There are a num-
ber of options available to us for DivAdd, the two most popular of which are:

1. Adding a Meta-Rule: We can add an informal rule that states that if the se-
mantics of an operation is not defined, then execution aborts with an error. This
is a pragmatic escape hatch that allows us to keep specifications compact, but
it risks the language designer ‘sprinkling’ behaviour over corner cases in the

1Here, ‘+’ is a symbol in our object language, whereas ‘+’ is addition at the meta-language level.

4



n ∈ nat
n ⇓ asNat(n)

(nat)
e1 ⇓ n1 n1 ̸= Err e2 ⇓ n2 n1 ̸= Err

e1+e2 ⇓ n1 + n2
(add’)

e1 ⇓ Err
e1+e2 ⇓ Err

(add-l-E)
e2 ⇓ Err

e1+e2 ⇓ Err
(add-r-E)

e1 ⇓ n1 n1 ̸= Err e2 ⇓ n2 n2 ̸= 0 n2 ̸= Err

e1 div e2 ⇓ ⌊n1
n2

⌋
(div’)

e1 ⇓ Err
e1 div e2 ⇓ Err

(div-l-E)
e2 ⇓ Err

e1 div e2 ⇓ Err
(div-r-E)

e2 ⇓ 0

e1 div e2 ⇓ Err
(div-0-E)

Figure 2: Semantics for DivAdd with explicit error handling

language that they hadn’t thought about. Moreover, it does not allow for the
semantics to describe any forms of error recovery.
Figure 6 in the appendix gives the full semantics for our language with such a
meta-rule.

2. Error Values: Extend the evaluation relation ⇓ so that in addition to the in-
tended result, it can also return error values. This approach requires adding
potentially many additional rules to the language, as we can see in Figure 2,
where 4 of the 8 rules only describe how to pass errors around.

The Appendix (Section A.1, optional reading) describes how we can directly take
such semantics and turn them into an interpreter for our language.

2 Describing a Language with Variables

Programming languages derive most of their utility from their ability to abstract and
reuse, with variables being the most central abstraction feature in practice. A for-
malism that allows us to describe semantics must thus also allow us to handle object
languages that allow programmers to use variables. For example, consider the lan-
guage in Figure 3: this language allows us to write expressions such as

let a = 1 + 2 + 3 in a + a

with the intent that we can assign a value to a and then reuse that value by simply
using the name ‘a’. Thus, we may want the above expression to compute the number
12.

Most languages also give us variables whose contents can be rebound or updated;
we will discuss this feature at a later stage.

5



⟨expr⟩ −→ nat
| id
| ⟨expr⟩+⟨expr⟩
| let id = ⟨expr⟩ in ⟨expr⟩

Figure 3: Language LetAdd, where nat is a natural number and id is a variable iden-
tifier.

We will now define the evaluation relation ⇓ for LetAdd. That is, when we talk
about ⇓ in this section, we mean a different evaluation relation than in the previous
section (since we are discussing a different language).

Our challenge now is to give a meaning to variables. For instance, in

let a = 1 in 2 + a ⇓ n

we want n to be 3, but that means that we need to carry the information that we have
bound a to 1 into the expression 2 + a. That is, we need to know that in this context,

a ⇓ 1

In a different context, such as let a = 2 in 2 + a ⇓ n, we may want a ⇓ 2
instead. Clearly we need to distinguish these cases, and we do so by passing an extra
parameter to our evaluation relation, the environment.

2.1 Environments

An environment is a mathematical object that can tell us the bindings of variables (cf.
Sebesta, Section 5.4). We will use the following notation:

E2 = {a 7→ 1, b 7→ 7}

to describe an environment E2 that knows that a is bound to 1 and b is bound to
7. To look up the binding of a variable x in an environment E, we write E(x), e.g.,
E2(a) = 1.

Observe here that a is a variable in the object language (LetAdd), whereas x is a
variable in the meta-language (Natural Semantics), such that x can bind to any object-
language variable, including a.

We write
E∅ = {}

for the empty environment. If we want to update an environment E with a new
binding from x to v, we write E[x 7→ v]. For example,

E2[c 7→ 42] = {a 7→ 1, b 7→ 7, c 7→ 42}

or
E2[a 7→ 0] = {a 7→ 0, b 7→ 7}

6



n ∈ nat
E ⊢ n ⇓ asNat(n)

(natl)
E ⊢ e1 ⇓ n1 E ⊢ e2 ⇓ n2

E ⊢ e1+e2 ⇓ n1 + n2
(addl)

E ⊢ e1 ⇓ n1 v ∈ id E[v 7→ n1] ⊢ e2 ⇓ n2

E ⊢ let v = e1 in e2 ⇓ n2
(letl)

v ∈ id
E ⊢ v ⇓ E(v)

(varl)

Figure 4: Semantics of LetAdd

We define this as follows:

E[x 7→ v](y) =

{
v ⇐⇒ y = x
E(y) otherwise

2.2 Defining Semantics with Environments

These environments E now become parameters to our evaluation relation ⇓. Borrow-
ing notation from mathematical logic, we write this extra parameter in a somewhat
unusual style (at least from the perspective of programmers):

E ⊢ p ⇓ n

Here, the turnstile (⊢) separates the evaluation context (our environment E) from
the description of the evaluation relation.

We can now use E in the definition of our evaluation rules:

E ⊢ a ⇓ E(a)

Figure 4 shows the evaluation rules for our full language. Note how the extra
parameter E is now threaded through all rules. Rules natl and addl, for instance, are
almost identical to the rules nat and add from the language DivAdd, except for E.
Rule varl shows how we look up variables in the environment.

Rule letl describes how we update our environment: when we encounter an ex-
pression

let v = e1 in e2

we first evaluate e1 to n1 in the environmentE (since e1 might also contain variables),
then we build a new environment E[v 7→ n1], which we then use as the environment
for evaluating e2.

Figure 5 shows a full example of how we can now formally derive the semantics
of a small program.

Once again our semantics is not entirely complete. For instance, the program a
only has a meaning if a is in the environment. If the environment contains no binding

7



1 ∈ nat
E∅ ⊢ 1 ⇓ 1

(natl)
2 ∈ nat

E∅ ⊢ 2 ⇓ 2
(natl)

E∅ ⊢ 1 + 2 ⇓ 3
(addl) a ∈ id

a ∈ id
E∅[a 7→ 3] ⊢ a ⇓ 3

(varl)
a ∈ id

E∅[a 7→ 3] ⊢ a ⇓ 3
(varl)

E∅[a 7→ 3] ⊢ a + a ⇓ 6
(addl)

E∅ ⊢ let a = 1 + 2 in a + a ⇓ 6
(letl)

Figure 5: An example derivation of the semantics of an expression in LetAdd, using
our natural semantics rules from Figure 4.

n ∈ nat
n ⇓ asNat(n)

(nat)
e1 ⇓ n1 e2 ⇓ n2

e1+e2 ⇓ n1 + n2
(add)

e1 ⇓ n1 e2 ⇓ n2 n2 ̸= 0

e1 div e2 ⇓ ⌊n1
n2

⌋
(div)

Figure 6: Semantics for DivAdd without error handling. Instead we use the implicit
rule that ‘all other cases produce an Err value’.

for a, this should (in practice) be an error; we can handle this situation analogously
to the division by zero for language DivAdd2.

A Translations to Interpreters

The following listings (all optional reading) show how to translate the semantics for
our languages into interpreters in different programming languages. This is purely for
illustration; you are not expected to understand the code of languages that you are
not already familiar with.

I recommend that you check translations of the semantics to languages that you
are familiar with until you can see the connection between natural semantics and
interpretation (unless you already do, of course). If you don’t find a language that
you know, please let us know, and feel free to submit your own implementation!

A.1 Translations of DivAdd

Figure 2 presented the semantics of Language DivAdd with explicit error handling
rules. In the following, we use a version of the semantics with implicit error handling
rules (Figure 6).

Our implementations assume that someone else has already taken care of the
translation of strings-of-digits to numbers (the asNat function).

2A key practical difference is that we cannot predict division by zero at compile time, whereas for many
languages we can at compile time predict whether there is a reference to an undefined name. Thus, we can
already do this error handling as part of the static semantics, rather than as part of the dynamic semantics.

8



A.1.1 DivAdd in Java

The Java implementation encodes all parts of the BNF in a tree with an interface Expr.
Here, we implement the ⇓ relation as a method eval of the interface Expr, and each
implementation of Expr implements its own part of the evaluation rule handling.

public in te r face Expr {
public int

e v a l ( ) ;
}

public c l a s s Num implements Expr {
pr ivate int n ;
public Num( in t n ) {

th i s . n = n ;
}

public int

e v a l ( ) {
return th i s . n ;

}
}

public c l a s s Add implements Expr {
pr ivate Expr e1 , e2 ;
public Add ( Expr e1 , Expr e2 ) {

th i s . e1 = e1 ;
th i s . e2 = e2 ;

}

public int

e v a l ( ) {
/ / no need t o c r e a t e v a r i a b l e s n1 , n2
return e1 . e v a l ( ) + e2 . e v a l ( ) ;

}
}

public c l a s s Div implements Expr {
pr ivate Expr e1 , e2 ;
public Div ( Expr e1 , Expr e2 ) {

th i s . e1 = e1 ;
th i s . e2 = e2 ;

}

public int

e v a l ( ) {
in t n2 = e2 . e v a l ( ) ;

9



i f ( n2 == 0 ) {
throw new Runt imeExcep t ion ( " E r r " ) ;

}
return e1 . e v a l ( ) / n2 ;

}
}

A.1.2 DivAdd in Haskell

The translation into Haskell is very direct, representing ⇓ as the function eval:

−− Language s yn t ax
data Expr = Num Int

| Add Expr Expr
| Div Expr Expr

−− Encod ing t h e r e s u l t a s ‘num ’ o r ‘ Err ’ .
data R e s u l t = Value Int −− normal r e s u l t

| E r r −− e r r o r r e s u l t
deriving Show −− t o p r i n t r e s u l t s

−− ( add )
e v a l (Num n ) = Value n
−− ( na t ) , u s i n g P a t t e r n Guards
e v a l ( Add e1 e2 )

| Value n1 <− e v a l e1
, Value n2 <− e v a l e2
= Value ( n1 + n2 )

−− ( d i v )
e v a l ( Div e1 e2 )

| Value n1 <− e v a l e1
, Value n2 <− e v a l e2
, n2 /= 0
= Value ( n1 ‘ div ‘ n2 )

−− Catch − a l l f o r e r r o r s
e v a l _ = Er r

A.2 Translations of LetAdd

A.2.1 LetAdd in Java

The Java implementation adds the environment parameter explicitly to the eval func-
tion.

public in te r face Expr {
public int

e v a l ( Env E ) ;

10



}

public c l a s s Num implements Expr {
pr ivate int n ;
public Num( in t n ) {

th i s . n = n ;
}

public int

e v a l ( Env E ) {
return th i s . n ;

}
}

public c l a s s Add implements Expr {
pr ivate Expr e1 , e2 ;
public Add ( Expr e1 , Expr e2 ) {

th i s . e1 = e1 ;
th i s . e2 = e2 ;

}

public int

e v a l ( Env E ) {
/ / no need t o c r e a t e v a r i a b l e s n1 , n2
return e1 . e v a l ( E ) + e2 . e v a l ( E ) ;

}
}

public c l a s s Var implements Expr {
pr ivate S t r i n g i d ;
public Var ( S t r i n g i d ) {

th i s . i d = i d ;
}

public int

e v a l ( Env E ) {
return E . lookup ( th i s . i d ) ;

}
}

public c l a s s L e t implements Expr {
pr ivate S t r i n g i d ;
pr ivate Expr e1 , e2 ;

public L e t ( S t r i n g id , Expr e1 , Expr e2 ) {
th i s . i d = i d ;

11



th i s . e1 = e1 ;
th i s . e2 = e2 ;

}

public int

e v a l ( Env E ) {
in t n1 = th i s . e1 . e v a l ( E ) ;
return th i s . e2 . e v a l ( E . add ( th i s . id , n1 ) ) ;

}
}

For the environment, we use the following helper class:

public c l a s s Env {
/ / l i n k e d l i s t − ba s ed imp l emen t a t i o n
pr ivate Env p a r e n t ;
pr ivate S t r i n g i d ;
pr ivate int v a l u e ;

public Env ( ) {
}

public Env ( Env parent , S t r i n g id , in t v a l u e ) {
th i s . p a r e n t = p a r e n t ;
th i s . i d = i d ;
th i s . v a l u e = v a l u e ;

}

public Env
add ( S t r i n g id , in t b i n d i n g ) {

return new Env ( this , id , b i n d i n g ) ;
}

public int

lookup ( S t r i n g i d ) {
Env e = th i s ;
while ( e != null ) {

i f ( i d . e q u a l s ( e . i d ) ) {
return th i s . v a l u e ;

}
e = e . p a r e n t ;

}
throw new Runt imeExcept ion ( " Name ␣ not ␣ found : ␣ " + i d ) ;

}
}

12


