
Final Exam

EDAP05: Concepts of Programming Languages, HT 2021

2022-01-15

Anonymisation code:

PLEASE READ THE FOLLOWING CAREFULLY

This final exam consists of 12 questions. You can reach a total of 100 points. If you get 50 points

(including your bonus points from the homework assignments), you will pass the exam.

Make sure that the final exam consists of precisely 19 numbered pages. Write down your anon-

myisation code on each page. Use a black or blue pen.

Only supply one answer per question. Strike out incorrect answers.

If you run out of space, continue writing on the back of the page. Additional sheets are available.

The following utilities are permitted:

• Paper and writing material

• Calculators that are not capable of wireless connectivity (should not be necessary)

• One sheet of A4 paper with hand-written notes (possibly on both sides)

Make sure to read all questions carefully before starting on your answer!

Good luck!

Hints: Solution hints are listed in shaded boxes. These hints are usually not full solutions (you

will have to explain/justify). There are also often alternative solutions that give full credit.

Question: 1 2 3 4 5 6 7 8 9 10 11 12 Sum

Max Points: 8 6 3 9 8 7 9 11 11 7 15 6 100

Points Reached:

1

Anonymkod:

P.2

Mystery grammar (for reference):

⟨Program⟩ −→ ⟨Block⟩
| ⟨Block⟩ ‘;’

⟨Decls⟩ −→ ⟨DeclList⟩ | ε
⟨DeclList⟩ −→ ⟨Decl⟩

| ⟨Decl⟩ ‘;’ ⟨DeclList⟩
⟨Decl⟩ −→ ‘VAR’ id ⟨OptType⟩

| ‘TYPE’ id ‘=’ ⟨Type⟩
| ⟨ProcDecl⟩

⟨OptType⟩ −→ ε | ‘:’ ⟨Type⟩
⟨ProcDecl⟩ −→ ‘PROC’ id ‘(’ ⟨Formals⟩ ‘)’ ⟨OptType⟩ ‘=’ ⟨Block⟩

| ‘PROC’ id ‘(’ ⟨Formals⟩ ‘)’ ‘=’ ⟨Block⟩
⟨Formals⟩ −→ ⟨FormalList⟩ | ε
⟨FormalList⟩ −→ ⟨Formal⟩

| ⟨FormalList⟩ ‘,’ ⟨Formal⟩
⟨Formal⟩ −→ id ‘:’ ⟨Type⟩
⟨Type⟩ −→ ‘INT’

| ⟨SubrTy⟩
| ⟨ArrayTy⟩
| id
| ⟨ProcTy⟩

⟨SubrTy⟩ −→ ‘[’ number ‘TO’ number ‘]’
⟨ArrayTy⟩ −→ ‘ARRAY’ ⟨SubrTy⟩ ‘OF’ ⟨Type⟩
⟨ProcTy⟩ −→ ‘PROC’ ‘(’ ⟨Formals⟩ ‘)’ ⟨OptType⟩
⟨Block⟩ −→ ⟨Decls⟩ ‘BEGIN’ ⟨Stmts⟩ ‘END’
⟨Stmts⟩ −→ ⟨StmtList⟩ | ε
⟨StmtList⟩ −→ ⟨Stmt⟩

| ⟨StmtList⟩ ‘;’ ⟨Stmt⟩
⟨Stmt⟩ −→ ⟨Assignment⟩

| ⟨Return⟩
| ⟨Block⟩
| ⟨Conditional⟩
| ⟨Iteration⟩
| ⟨Output⟩
| ⟨Expr⟩

⟨Assignment⟩ −→ ⟨Expr⟩ ‘:=’ ⟨Expr⟩
⟨Return⟩ −→ ‘RETURN’ ⟨Expr⟩
⟨Conditional⟩ −→ ‘IF’ ⟨Expr⟩ ‘THEN’ ⟨StmtList⟩ ‘ELSE’ ⟨StmtList⟩ ‘END’
⟨Iteration⟩ −→ ‘WHILE’ ⟨Expr⟩‘DO’ ⟨StmtList⟩ ‘END’
⟨Output⟩ −→ ‘PRINT’ ⟨Expr⟩
⟨Expr⟩ −→ ⟨Operand⟩

| ⟨Expr⟩ ⟨Operator⟩ ⟨Operand⟩
⟨Operand⟩ −→ number

| id
| ⟨Operand⟩ ‘[’ ⟨Expr⟩ ‘]’
| ⟨Operand⟩ ‘(’ ⟨Actuals⟩ ‘)’
| ‘(’ ⟨Expr⟩ ‘)’

⟨Operator⟩ −→ ‘+’ | ‘>’ | ‘==’ | ‘AND’
⟨Actuals⟩ −→ ⟨ActualList⟩ | ε
⟨ActualList⟩ −→ ⟨Expr⟩

| ⟨Actuals⟩ ‘,’ ⟨Expr⟩

Anonymkod:

P.3

Question 1 (8 Points)

In the table below you see pairs of types with a box in between. Write an X in the box

if neither type is a subtype of the other, or draw a <: or :> (suitably) to indicate that one is a

subtype of the other.

Use the same assumptions as in class, i.e., that (1) we are using an imperative language (updates

are allowed), that (2) the type system enforces strong typing and (3) the type system permits

any type to be a subtype of another if and only if doing so will not require dynamic checks.

(a) (4 Points) Fill in as indicated above:

[5 TO 8] <: [0 TO 8]

[5 TO 8] :> [5 TO 7]

[5 TO 8] X [3 TO 7]

ARRAY [0 TO 10] OF [0 TO 10] <: ARRAY [5 TO 10] OF [0 TO 10]

ARRAY [0 TO 10] OF [5 TO 10] X ARRAY [0 TO 10] OF [0 TO 10]

(b) (4 Points) Continue filling in. For the following, assume that A is a supertype of B, and that
the type C[X] is contravariant in type parameter X.

A :> B

C[A] <: C[B]

A→ A X B→ B

A→ A :> A→ B

A→ A <: B→ A

A→ B <: B→ A

Anonymkod:

P.4

Question 2 (6 Points)

Consider the following Mystery program.

1 PROC g(v : INT) =
2 VAR z : INT;
3 PROC R() =
4 BEGIN
5 z := 0 // Assignment -A
6 END;
7 PROC f(i : INT): INT =
8 VAR z : INT
9 BEGIN
10 R();
11 z := z + i; // Assignment -B
12 RETURN z
13 END
14 BEGIN
15 RETURN f(v);
16 END
17 BEGIN
18 PRINT g(0);
19 END

(a) (4 Points) Assuming static or dynamic scoping, which z (line 2 or line 8) do Assignment-A

and Assignment-B update? Fill in.

Scoping Assignment Line
Static Assignment-A 2

Static Assignment-B 8

Dynamic Assignment-A 8

Dynamic Assignment-B 8

(b) (2 Points) Assuming static scoping, what are the scopes of i and of the z in line 8? Give

line numbers or mark in the code above.

Hints:
i, z:7–13 or 7–12

Anonymkod:

P.5

Question 3 (3 Points)

Consider the following Mystery program. Assume that all INT variables are initialised to 0 by
default.

1 PROC h(i : INT): INT =
2 VAR y : INT
3 BEGIN
4 y := y + i;
5 RETURN y
6 END
7 BEGIN
8 PRINT h(0);
9 PRINT h(1);
10 PRINT h(2)
11 END

When run, the program prints the following:

0

1

3

(a) (3 Points) What storage binding does y (line 2) use? Explain.

Hints: No reason to assume heap-dynamic binding. Stack-dynamic would reset y to 0.
The answer should explain how static binding would justify the result we see here.

Anonymkod:

P.6

Question 4 (9 Points)

You are using a programming language that has a built-in array type, array<T>, where T can
be any type in the language. You now want to write a subroutine concat that concatenates two
arrays. Below is a snippet in Java syntax that illustrates the idea:

// in Java: assume a static method for the subroutine
static SomeType_0 concat(SomeType_1 array1, SomeType_2 array2) {

SomeType_3 mergedArray =
new SomeType_4[array1.length + array2.length];

// Copy array1 into mergedArray
...
// Copy array2 into mergedArray
...

return mergedArray;
}

Assume that we want the type of concat to be as general as possible, and that the language is

strongly statically typed. In the following, you can use Java, Scala, SML, Rust, or C++ syntax,

or explain informally. If you cannot express what you want to express in the syntax that you

picked, use English.

(a) (2 Points) Assume that the language supports parametric polymorphism, but not subtype

polymorphism. Specify the most general type for concat that you can.

Hints: (array<T>, array<T>) → array<T>

(b) (2 Points) Consider the type that you gave in (a). In a language like Java with subtype

polymorphism, are there any uses of concat that would be type-safe from the perspective

of strong typing but that are forbidden by your type? Explain or give an example.

Hints: Example: concat with parameters array<Integer>, array<String> could

yield array<Object>, but we don’t allow that here.

Anonymkod:

P.7

(c) (4 Points) Assume that the language supports subtype polymorphism and bounded para-

metric polymorphism. Specify the most general type for concat that you can.

Hints: ∀α, β, γ.α :> β, α :> γ.(array<β>, array<γ>) → array<α>

(Adequately translated into one of the languages)

(d) (1 Point) Are there any uses of concat in this language that would be type-safe from the

perspective of strong typing but that are forbidden by your type? Explain or give an exam-

ple.

Hints: concat involving empty lists, here the element type is irrelevant.

Anonymkod:

P.8

Question 5 (8 Points)

What is the relation between variance and parameter passing modes, if any?

Consider the following Mystery program:

1 PROC g(f : PROC(x : [0 TO 10]): INT) : INT = //...

Here, f : [1 TO 10] → INT, and f takes a parameter x : [1 TO 10].

In the following sub-questions, explain why the alternative(s) do not preserve strong typing. You
can give an example. Remember that you can reference your answers to other sub-questions to

simplify your answer.

(a) (2 Points) Assume that we pass x via pass-by-value. What is the most general variance that

we can give to the type of x, relative to the type of f? Explain.

(b) (3 Points) (Synthesis) Assume that we pass x via pass-by-result. What is the most general

variance that we can give to the type of x, relative to the type of f? Explain.

Hints: Treat like a return value.

(c) (3 Points) (Synthesis) Assume that we pass x via pass-by-name. What is the most general

variance that we can give to the type of x, relative to the type of f? Explain.

Hints: Cf. (a) and (possibly) (b), the latter if we assume that we can use x as an lvalue (as

in Mystery and Algol).

Anonymkod:

P.9

Question 6 (7 Points)

(a) (4 Points) Which of the following is part of the syntax, static semantics, and dynamic se-

mantics? Add check-marks as appropriate.

Static Dynamic
Syntax Semantics Semantics

Type Inference X

Type Checking X X

Operator associativity X

Closures anything but Syntax

(b) (3 Points) (Synthesis) Assume that you are given a language that is implemented in a pure

interpreter (i.e., not a hybrid implementation). Is it possible that the language uses static

typing? Explain your reasoning.

Hints: Yes. Static type checking does not require compilation. Implementing a static type

checker requires much of the implementation effort of building a compiler in practice,

though.

Anonymkod:

P.10

Question 7 (9 Points)

We are adding a new type to Java. This type, valset<T>, is polymorphic over T, and represents
sets that contain T values as elements.

Values of type valset<T> cannot be modified: any operation on them instead creates a new

value, analogously to integers.

Assume that in the Java syntax, ⟨expr⟩ is the Java non-terminal for arbitrary expressions. We

extend ⟨expr⟩ as follows:

⟨expr⟩ −→ ‘[[’ ⟨exprlist⟩‘]]’

⟨exprlist⟩ −→ ⟨expr⟩
| ⟨expr⟩ ‘,’ ⟨exprlist⟩

We also overload the operator +. Let s1, s2 : valset<T> and e : T, then:

a. s1 + e evaluates to a set that contains the elements of s1 and the element e.

b. s1 + s2 evaluates to the union of the two sets s1 and s2.

For brevity, we omit other useful operators that such a set should have.

We define the semantics of set constructions with the following natural semantics rules:

[[ℓ]] ⇓ vℓ e ⇓ ve
[[e, ℓ]] ⇓ vℓ ∪ {ve}

(literal-singleton)
e ⇓ ve

[[e]] ⇓ {ve}
(literal-multi)

To define the semantics of the overloaded + operator, we have the choice between two options:

Option A:

[[ℓ]] ⇓ vℓ e ̸= [[ℓ′]] for any ℓ′ e ⇓ ve
[[ℓ]] + e ⇓ vℓ ∪ {ve}

(add-element-A)

ℓ1 ⇓ vℓ1 ℓ2 ⇓ vℓ2
[[ℓ1]] + [[ℓ2]] ⇓ vℓ1 ∪ vℓ2

(union-A)

Option B:

s : valset<T> s ⇓ vs e : T e ⇓ ve
s + e ⇓ vs ∪ {ve}

(add-element-B)

s1 : valset<T> s2 : valset<T> s1 ⇓ vs1 s2 ⇓ vs2
s1 + s2 ⇓ vs1 ∪ vs2

(union-B)

The following questions explicitly provide any Java-specific knowledge you need.

(Questions on the next page.)

Anonymkod:

P.11

(a) (6 Points) Do the natural semantics of Option A and Option B result in different beha-

viour in practice? Give an example to support your claim.

Hints: Option A operates purely syntactically, so it cannot correctly handle e.g. a variable

of valset type. An answer should highlight this with an example.

(b) (3 Points) (Synthesis) Assume that we add boxing/unboxing coercions to Java that can box

valset<T> into the object type ValueSet<T> and unbox accordingly. Thus, e : valset<T>
whenever e : ValueSet<T>.

Review the two semantic options Option A and Option B. Which of them, if any, are

affected by the boxing/unboxing coercions?

Hint: Java uses subtyping, and all object types have Object as a supertype.

Since all valsets are now objects, Option B will now be ambiguous for valset<Object>.

Anonymkod:

P.12

Question 8 (11 Points)

We define the language L1 via the non-terminal ⟨expr⟩ in the following grammar:

⟨expr⟩ −→ ⟨con⟩
| ‘X’
| ⟨con⟩ ‘@’ ⟨expr⟩

⟨con⟩ −→ ⟨lit⟩
| ⟨lit⟩ ‘+’ ⟨con⟩
| ‘?’ ⟨expr⟩⟨proc⟩

⟨proc⟩ −→ ‘A’⟨con⟩
| ‘STOP’

⟨lit⟩ −→ nat

where nat describes the natural numbers (N).
(a) (3 Points) For each of the following token sequences, check-mark whether they are pro-

ductions of the L1 grammar:

Yes No
? 1 + 2 STOP @ X

1 @ 2 @ 3 + X

? 1 A X @ 2

(b) (4 Points) L1 has two binary operators, ‘@’ and ‘+’. What is the associativity of ‘+’? Explain
by giving a parse tree.

right-associative

(c) (4 Points) L1 has two binary operators, ‘@’ and ‘+’. What is the precedence of ‘+’? Explain
by giving a parse tree.

+ has higher precedence than @

Anonymkod:

P.13

Question 9 (11 Points)

Consider the following custom-defined SML datatype, which describes a list that can contain

both int and string elements:

datatype polylist = END
| INT of int * polylist
| STR of string * polylist

With this type, we can e.g. list the values 1, "a", 2, "b" in order. We would write this list

pl0 as follows:

val pl0 = INT(1, STR("a", INT(2, STR("b", END))))

(a) (5 Points) Write an SML function rmstr : polylist → polylist that removes all STR
elements from a polylist, unless that element is the very last element in the list. For

example, rmstr(pl0) should yield INT(1, INT(2, STR("b", END))).

Hints: Example:

fun rmstr (STR(s, END)) = STR(s, END)
| rmstr (INT(i, tl)) = INT(i, rmstr(tl))
| rmstr (STR(i, tl)) = rmstr(tl)
| rmstr END = END

Anonymkod:

P.14

1 (* repeated from the previous page *)
2 datatype polylist = END
3 | INT of int * polylist
4 | STR of string * polylist

(b) (1 Point) Given our definition of polylist, what is the type of INT?

(c) (5 Points) (Synthesis) Consider the following SML function, org:

1 val org : polylist -> polylist =
2 let fun proc (intl, strl) =
3 let fun mkint (i) (ir) = intl(INT (i, ir))
4 fun mkstr (s) (sr) = strl(STR (s, sr))
5 fun sub (END) = intl(strl(END))
6 | sub (INT (i, r)) = proc (mkint i, strl) (r)
7 | sub (STR (s, r)) = proc (intl, mkstr s) (r)
8 in sub
9 end
10 fun id (x:polylist) = x
11 in proc (id, id)
12 end

SML uses type inference to find the most general type for each function and variable. Using

your knowledge of SML, determine the types of the following functions and variables:

id : polylist→ polylist

intl : polylist→ polylist

strl : polylist→ polylist

mkint : int→ polylist→ polylist

mkstr : string→ polylist→ polylist

sub : polylist→ polylist

proc : (polylist → polylist× polylist → polylist) → polylist → polylist

(d) (Optional: 3 points (bonus)) What does the function org from (b) compute?

Hints: Shuffle all INT entries before all STR entries. (Uses continuation passing style.)

Anonymkod:

P.15

Question 10 (7 Points)

(a) Specify a generic abstract datatype for arrays in a language of your choice, with operations

at least for:

a. reading array element

b. updating array elements

c. determining the array length

The abstract datatype does not have to match the array operations already provided by the

language that you have selected. Specify which language you used.

Youmay use language features that your language of choice does not provide, if you explain

them, and you may deviate from the language syntax as long as your meaning is clear.

Hints: Typeclass or interface definition (or abstract class / C++ purely virtual class) that

takes one type parameter for the element type.

(b) In what sense is your specification an abstract datatype?

Hints: No implementation, but specifies contracts.

(c) In what sense is your specification a generic abstract datatype?

Hints: Parametric over element types.

Anonymkod:

P.16

Question 11 (15 Points)

Explain the differences between various concepts that we have discussed throughout the course.

(a) (3 Points) What are the differences between pointers and references?

Hints: pointer arithmetic ⇒ no strong typing

(b) (4 Points) What is the difference between reference equality vs structural equality? Explain

with an example.

Anonymkod:

P.17

(c) (4 Points) What is the difference between an enumeration type and an algebraic datatype?

Explain with an example.

Hints: algebraic datatypes strictly subsume enums. Example polylist: The INT and STR
constructors are not expressible in enums.

(d) (4 Points) What is the difference between overloading and overriding? Explain with one

example for each.

Anonymkod:

P.18

Question 12 (6 Points)

(Synthesis)

Consider the following Mystery program:

1 PROC P(a : INT, b : INT) : INT =
2 BEGIN
3 IF a
4 THEN RETURN b
5 ELSE RETURN a
6 END
7 END;
8 PROC Q(x : INT): INT =
9 BEGIN
10 PRINT x;
11 RETURN x
12 END
13 BEGIN
14 P(Q(1) AND Q(0), Q(0) AND Q(1))
15 END

Upon running the program, you observe the following output:

0

0

Assume static scoping, stack-dynamic storage binding, and that we are not using pass-by-result.

(a) Given this output, what can we say about the semantics of the AND operator? Explain your

answer.

Hints: short-circuit right-to-left.

(b) Given this output, what can we say about subroutine parameter evaluation order? Explain

your answer.

Hints: Answer should point out that “a” is evaluated more than once.

Anonymkod:

P.19

