UNIVERSITY

EDAPO05: Concepts of
Programming Languages
LECTURE 1: INTRODUCTION

Christoph Reichenbach

Contents

» Programming languages: structure and semantics
» Some language implementation considerations
» See the Compilers course for more details!

» How to evaluate and compare languages

2/58

What we will not be covering

» Assembly language

» Concurrency

» Software tools

» How to build a compiler

3/58

Course Structure

Information Interaction

» Today's lecture » 2x per week: Class Sessions
» Our Textbook » Exercises
» Course Supplements » Online discussions via Piazza
» e-mail:
christoph.reichenbach@cs.1lth.se
» TAs:
» Noric:
noric.couderc@cs.lth.se
> Alex:
alexandru.dura@cs.lth.se

4/58

Skills

» Skill-based learning:

» Enumerated list of skills that you need to pass the exam
» Skill numbers connected to book, supplements, exercises

5/58

Conversational Classroom

» Future lectures are based on the textbook:

| GLOBAL §
EDITION

(+ Supplements)

» Read the sections of the book listed on the weekly
schedule, prepare your questions ahead of time!

» Lecture slots interactive Q&A

Bring your questions!

6/58

Online Systems

All accessible via http://cs.1th.se/EDAPO5 :
» Schedule and Skillset overview

» What skills are you supposed to know?
> What lecture / reading material helps you with those skills?

» Discussions via Piazza

» Group and Homework management via the Course Online
system (Online Friday)

7/58

Exercises

» Five weekly exercises

» Starting next week

» Available: Wednesday mornings

» Deadline: Wednesday evening the week after

One exception per group can be handed in late

» Submission: Course online system
» Done in groups of two (group selection in online system)
» Get help from TAs during labs (sign-up: online system):
Thu 08:15-10:00 E:Alfa, E:Beta
Thu 13:15-15:00 E:Gamma
Fri 08:15-10:00 E:Hacke, E:Panter
» Need 50% on each assignment to be admitted to final exam
» Bonus on final exam if you get 80% or better right:

> 1% for 80% to < 90%

> 2% for 90% or more

» Late exceptions don’t count towards bonus points

8/58

Exam

17 January (Fri), 14:00-19:00, in MA:10 G-J

» All exam questions based on the skills from our skill list
» No more than 25% of points based on synthesis:
> Interaction between two or more skills

» Alternative option (only for exchange students): Project +
Report + Presentation

9/58

Week Overview

| Mo | Tu | We | Th | Fr
Class Class New Labs Labs
Session Session Exercise
| Mo | Tu | We | Th | Fr
Submit
exercise
solution

10/58

Why Study Programming Languages?

11/58

TIOBE Programming Language Index

Oct 2019 Oct 2018 Change
1 1

2 2

3 4 -~
4 3 v
5 6 A~
6 5 v
7 8 -~
& 9 ~
9 7 v
10 15 A
" 28 A
12 10 v
13 18 A
14 13 v
15 14 v
16 20 2
7 12 ¥

Source: tiobe.com

Programming Language

Java

C#

Visual Basic .NET
JavaScript

saL

PHP

Objective-C
Groovy

Swift

Ruby

Assembly language
R

Visual Basic

Go

Ratings
16.884%
16.180%
9.089%
6.229%
3.860%
3.745%
2.076%
1.935%
1.909%
1.501%
1.394%
1.362%
1.318%
1.307%
1.261%
1.234%

1.100%

Change
-0.92%
+0.80%
+1.93%
-1.36%
+0.37%
-2.14%
-0.20%
-0.10%
-0.89%
+0.30%
+0.96%
-0.14%
+0.21%
+0.06%
+0.05%
+0.58%

-0.15%

12/58

TIOBE Programming Language Chart

TIOBE Programming Community Index
Source: www.tiobe.com
30

25

20

== Visual Basic .NET
JavaScript

= SQL

== PHP
Objective-C

Ratings (%)
=)

2002 2004 2006 2008 2010 2012 2014 2016 2018

13/58

Some Languages

14 /58

How We Will Proceed

» What are programming languages (not)?
» Describing languages

» Comparing language features

» Exploring language features:

» Meaning
» Impact on language implementation

15/58

Languages vs. Language
Implementations

16 /58

Program Execution

Machine Cod
[Assembly code e Assembler j— (1> i1

Loader

» Assembler: trivial translation to (J
machine code load

» Loader: copies machine code into Machine Code in RAM ‘
memory, initialises registers, jumps into
COde run on

» CPU executes machine code directly CPU

How about languages that the CPU can’t
execute directly?

17/58

Interpretation

’ High-level code} read and execute

\ 4

Interpreter

run on

\4
> Interpreter reads high-level code, then alternates:

» Figure out next command
» Execute command

» May directly encode operational semantics

Examples: Python, Perl, Ruby, Bash, AWK, ...

18/58

Example: CPython (‘normal’ Python)

0 LOAD_CONST

3 STORE_FAST

6 SETUP_LOOP

9 LOAD_FAST

Python source code 12 LOAD_CONST

i=0 II 15 COMPARE_QOP
while i <= 10: 18 POP_JUMP_IF_FALSE

print i 21 LOAD_FAST

i+=1 | " PRINT_ITEM
25 PRINT_NEWLINE

26 LOAD_FAST

29 LOAD_CONST

32 INPLACE_ADD
33 STORE_FAST

36 JUMP_ABSOLUTE

39 POP_BLOCK

19/58

Python execution (simplified)

» Loop:
» Load next Python operation
» Which instruction is it? Jump to specialised code that knows
how to execute the instruction:
» Load parameters to operation
> Perform operation
» Continue to next operation

Executing e.g. an addition in CPython takes dozens of
assembly instructions

20/58

Compilation

Machine Code

’ Assembly code (on disk)

compile to
Compiler (Loader]

load
High-level ’ Machine Code in RAM ‘
Code

run on

\ 4
CPU

Examples: C, C++, SML, Haskell, FORTRAN, ... |

21/58

Compiling and Linking in C

High-Level
Program
.c

W}:

Assembly
Program

Assembler

library

>

.S
.asm

Binary
Program
.exe

Binary program is machine code, can be run by CPU

22/58

Comparison: Compilation vs

Interpretation
Property Interpretation \ Compilation
Execution performance | slow fast
Turnaround fast slow (compile & link)
Language flexibility high limited*®

*) Compiler Optimisation 4 Flexibility

23/58

Dynamic Compilation

> |[dea: compile code while executing
» Theory: best of both worlds
» Practice:

» Difficult to build
» Memory usage can increase
» Performance can be higher than pre-compiled code

Examples: Java, Scala, C#, JavaScript, ...

24 /58

Summary

» Languages implemented via:

» stand-alone Compiler

» Interpreter
» Hybrid Implementation

> Part compiler, part interpreter
» May include: Dynamic Compiler

» Trade-off between:
» Language flexibility
» CPU time / RAM usage
» Languages may have multiple implementations

» Example: CPython vs. Jython
» gcc vs. 11vm/clang vs. MSVC

25 /58

Language Critique

» What is the best programming language?

> Best for what task?

» Measured by what criteria?

» Measurements obtained how?

(For most criteria, we don’t have good measurement tools!)

» Qualities of:

> the language

> the implementation(s)

> the available tooling

> the available libraries

> other infrastructure (user groups, books, ...)

26/58

Criterion: Readability

» How easy is it to read software in the language?

» Program 1:

A Program E
v
e+ttt [D>H+++ [ves

S++>+++>+H+H+>+H<<

<<=]>+>+>->>+[< » Program 2:

1<=1>> . >——— +++ Multiply each number in S with itself,
Fht L A D> < add up all the results to compute a
e .= sum, and then give me the nonnegative
——————— OO+ >+, number that, when multiplied with

itself, is equal to that sum.
» Readability depends on:
> Problem domain (typical notation?)
» Reader's background

» Multiple general characteristics help us understand readability
27/58

Simplicity

» Small number of features
» Minimal redundancy

Example Counter-Example
» Modula-3 language:

Design deliberately limited Python

to 50 pages

def d(x):
r = x[::-1]
return x == r

28/58

Orthogonality

» Features can be combined freely

» Minimal overlap between features

Example Counter-Example
> loops / conditionals may

contain other loops / C

conditionals

// global variable section
» Many functional languages:

‘Everything is a value’ float f1
float f2

2.0f x 2.0f;
sqrt(2.0f); // error

29/58

Syntax Design

Example

C

if (cond)
print(a);
print(b);

4

Go

if cond {
print(a);
print(b);

}

Counter-Example

Fortran 95

program hello
implicit none
integer end, do
do = 0
end = 10
do do=do,end

print *,do

end do

end program

30/58

Data Types

» Datatypes can communicate intent
» Possibly enforce checking

Java

enum Color {
Red, Green, Blue

};

Color ¢ = readColorFromUser();

31/58

Summary: Readability Characteristics

» Readability helps us understand code
» Core characteristics:

» Simplicity

» Orthogonality

» Syntax Design

» Datatypes

32/58

Criterion: Writability

» How easy is it to write software in the language?

» Characteristics that contribute to Readability
contribute to Writability

» Further criteria for Writability:
» Support for Abstraction

> over values (via variables)

> over expressions (via functions)

> over statements (via subprograms)
> over types...

» Expressivity

33/58

Criterion: Reliability

» How easy is it to write reliable software in the language?

» Criteria that contribute to Readability or Writability
also contribute to Reliability
» Further criteria:
» Type Checking
> The language prevents type errors (— in two weeks)
» Exception Handling

> The language allows errors during execution to be systematically
escalated (— in four weeks)

» Restricted Aliasing

34/58

Restricted Aliasing

Java
public static <T> void
concat(List<T> lhs, List<T> rhs) {
for (int i = 0; i < rhs.size(); i++) {
lhs.add(rhs.get(i));
+
}

concat(a, a);

» Attach rhs to the end of lhs

» This code misbehaves (infinite loop) when passed the same
list for both parameters

» Aliasing: two different names mean the same thing

35/58

Criterion: Cost

» Cost explains the investment needed to use a language:
» Training time
» Programming time
» Compilation time
> Run time

» Financial cost of special software
» Cost of limited reliability

> Maintenance time
> Insurance cost

36/58

Language Evaluation Summary

| | Readability | Writability | Reliability
Simplicity
Orthogonality
Types
Syntax Design
Abstraction Support
Expressivity
Type Checking
Exception Handling
Restricted Aliasing
(this is Robert W. Sebesta, “Concepts of Programming
Languages”, Table 1.1)

++ |+ +

|+

|||

» Separate dimension: Cost

> Alternative (more detailed) model: Green and Petre,
“Cogpnitive Dimensions of Notation”

37/58

Describing Languages

» Program structure
» Program meaning

» Well-formedness
» Runtime behaviour

38/58

What do programs mean?

Let's run the following program in some language:

print (32767 + 1);

Which of the following outputs is correct?
» 32768

» 32767 + 1

» -32768

> octopus

» no visible output

Must know the language’s syntax and semancis

39/58

Structure and Meaning

Pragmatics: Intent

“I need more space on my disk”
Semantics: Meaning

“Delete all temporary files”

Syntax: Word choice & arrangement
rm -rf /tmp/*

40/58

Semantics

Semantics: The study of meaning (logic, linguistics)
» “meaning should follow structure”
» This is a hypothesis in linguistics
(seems to hold)
» And a proposal in logic
(turns out to work reasonably well)
Example:
» If expression ‘X' has meaning ‘v’
» And expression ‘'Y’ has meaning ‘w’

» Then expression ‘(X) / (Y)' has meaning ‘whatever number
you get when you compute

What if ‘v’ is not a number, or ‘w’ is zero?

41/58

Backus-Naur Form: Specifying Syntax

Assume nat is a natural number:

Formalise the rules with Backus-Naur-Form (BNF):

» ‘Any number is an expression.
> (expr) —> nat

» “Two expressions with a + between them form an expression’
> (expr) —> (expr)+(expr)

» ‘“Two expressions with a * between them form an expression’
> (expr) —> (expr)*(expr)

Or in short:

(expry —> nat | {expr)+(expr) | (expr)*{expr)

» We call nat, +, * terminals
» We call (expr) a nonterminal
Nonterminals can appear on left-hand side of (—)

42 /58

Backus-Naur Form: Example

(expry —> nat | (expr)+(expr) | (expr)*{expr)

(142)*3 (expr

)
/
alternative parse: (expr)
1

a parse:

14+(2*3) (expr)

Ambiguity! Parsers must know which parse we mean!

43/58

Syntax of a Simple Toy Language

Syntax of language STOL:

(expr) — nat
| (expr)+(expr)
| ifnz(expr)then(expr)else(expr)
Examples:
)
»5 + 27
»ifnz 5 + 2 then O else 1

44 /58

Meaning of our Toy Language:
Examples

What we want the meaning to be:

5 5
5 + 27 32
ifnz 5 + 2 then 1 else 0 | 1

Can we describe this formally?

4558

Defining Meaning

The principal schools of semantics:

Semantics
Denotational Operational Axiomatic

Structural Algebraic

46 /58

Operational Semantics: The two
branches

» Natural Semantics (Big-Step Semantics)
» p |} v: p evaluates to v
» Describes complete evaluation
» Compact, useful to describe interpreters
» Structural Operational Semantics (Small-Step Semantics)
» p1 — po: p1 evaluates one step to po
» Captures individual evaluation steps
> Verbose/detailed, useful for formal proofs

47/58

Natural Semantics of our simple toy
language

n,ni,np,n3 € mnat
€,61,6,63 € expr

erldlm eln n=n+n
eitex I n

(val) (add)

nln

etdln n#0 el m
ifnz e; then e else e3 | m

(ifnz)

e1 0 el n3
ifnz e; then e else ez n3

(ifz)

Note:

» For simplicity, we set nat = N
» (+) is arithmetic addition

» + is a symbol in our language

48/58

Natural Semantics: Example

573) g (@) 55,
71 vl

3+ 205 1y .
- (ifnz)
ifnz 3 + 2 then 1 else 01

(add)

49/58

Natural (Operational) Semantics

Preconditions
|

Program /Expression Value

If P1,..., Py, all hold, then e evaluates to v.
» e: Arbitrary program (expression, in our example)

» v: Value that can't be evaluated any further (natural
number, in our example)

50/58

Extending our language with ‘let’

Name bindings x € name:

(expr)+(expr)
ifnz(exprythen(expr)else(expr)
name

(expry — nat
!
|
!
| let name =(expr)in(expr)

Example:
let x = 2 + 3 in x + x {10

But how can we describe x | ... by itself?

51/58

Environments

» With variables, the meaning of program depends on their
environment

| Environment: E : name — value |

» Environments are partial functions from names to ‘values’
> In our running example, value = nat

Notation:
E(x) look up value for x

E[x — v] update environment E, x maps to v

v — =X
Elx = v](y) = { E(y) };therwise

52/58

Environments in Natural Semantics

We borrow the turnstile (F) from formal logic:

Ereln EFeln n=n+n
EFe+erln

(val) (add)

EFnln

Eredn n#0 EFeln
EFifnz e; then e else e3l m

(ifnz)

El—eliLO El—e3lin3
El ifnz e; then e else ez n3

(ifz)

E(x) =
EFx{v ,)

EFelv (Ex—v])FelV
EFlet x=€ in e |V

(let)

53/58

Summary

» Natural Semantics describe program behaviour through
reduction rules

» Analogous to interpreters
» Notation: p || v
> p: program
> v: value (cannot be reduced further)

» Uses inference rules:
preconditions

plv

» Can pass extra parameters (e.g., environment for variable
bindings):
AB CkFplv

» Requires well-formed program

54 /58

Program Well-Formedness

» Consider the program a + b

» E(a) and E(Db) will be undefined
» Compiler would issue error message

» Other examples:

» References to modules that don't exist
» Type errors
» Function definition without return statement

» Static semantics: analysis and error-checking before execution

55 /58

Describing Languages revisited

» Program structure: Syntax
» Program meaning: Semantics

» Well-formedness: Static Semantics
» Runtime behaviour: Dynamic Semantics

56 /58

Daily Summary

» Languages vs. Language Implementations
» Implementation tyoes

> Interpreter, Compiler, Hybrid Implementation
» Language evaluation criteria:

» Readability, Writability, Reliability, Cost

» Various characteristics contribute to the criteria
» Syntax: Backus-Naur Form (BNF)
» Semantics: Program behaviour

» Static: Well-formedness
» Dynamic: Run-time behaviour (only for well-formed code)

57 /58

Next Week

» Syntax

» Variables, Binding, Scope
» Semantics

» Basic Expressions

» Primitive Types

Read the listed parts of the book, bring your questions!

58/58

