
EDAP05: Concepts of
Programming Languages
LECTURE 1: INTRODUCTION

Christoph Reichenbach

Contents

I Programming languages: structure and semantics
I Some language implementation considerations

I See the Compilers course for more details!
I How to evaluate and compare languages

2 / 58

What we will not be covering

I Assembly language
I Concurrency
I Software tools
I How to build a compiler

3 / 58

Course Structure

Information
I Today’s lecture
I Our Textbook
I Course Supplements

Interaction
I 2× per week: Class Sessions
I Exercises
I Online discussions via Piazza
I e-mail:

christoph.reichenbach@cs.lth.se
I TAs:

I Noric:
noric.couderc@cs.lth.se

I Alex:
alexandru.dura@cs.lth.se

4 / 58

Skills

I Skill-based learning:
I Enumerated list of skills that you need to pass the exam
I Skill numbers connected to book, supplements, exercises

5 / 58

Conversational Classroom
I Future lectures are based on the textbook:

(+ Supplements)
I Read the sections of the book listed on the weekly
schedule, prepare your questions ahead of time!

I Lecture slots interactive Q&A

Bring your questions!
6 / 58

Online Systems

All accessible via http://cs.lth.se/EDAP05 :
I Schedule and Skillset overview

I What skills are you supposed to know?
I What lecture / reading material helps you with those skills?

I Discussions via Piazza
I Group and Homework management via the Course Online

system (Online Friday)

7 / 58

Exercises
I Five weekly exercises

I Starting next week
I Available: Wednesday mornings
I Deadline: Wednesday evening the week after
One exception per group can be handed in late

I Submission: Course online system
I Done in groups of two (group selection in online system)
I Get help from TAs during labs (sign-up: online system):

Thu 08:15–10:00 E:Alfa, E:Beta
Thu 13:15–15:00 E:Gamma
Fri 08:15–10:00 E:Hacke, E:Panter

I Need 50% on each assignment to be admitted to final exam
I Bonus on final exam if you get 80% or better right:

I 1% for 80% to < 90%
I 2% for 90% or more

I Late exceptions don’t count towards bonus points
8 / 58

Exam

17 January (Fri), 14:00–19:00, in MA:10 G-J
I All exam questions based on the skills from our skill list
I No more than 25% of points based on synthesis:

I Interaction between two or more skills
I Alternative option (only for exchange students): Project +
Report + Presentation

9 / 58

Week Overview

Mo Tu We Th Fr
Class
Session

Class
Session

New
Exercise

Labs Labs

Mo Tu We Th Fr
Submit
exercise
solution

10 / 58

Why Study Programming Languages?

11 / 58

TIOBE Programming Language Index

Source: tiobe.com
12 / 58

TIOBE Programming Language Chart

13 / 58

Some Languages

14 / 58

How We Will Proceed

I What are programming languages (not)?
I Describing languages
I Comparing language features
I Exploring language features:

I Meaning
I Impact on language implementation

15 / 58

Languages vs. Language
Implementations

16 / 58

Program Execution

Assembly code Assembler
Machine Code
(on disk)

Loader

Machine Code in RAM

CPU

load

run on

I Assembler: trivial translation to
machine code

I Loader: copies machine code into
memory, initialises registers, jumps into
code

I CPU executes machine code directly

How about languages that the CPU can’t
execute directly?

17 / 58

Interpretation

CPU

Interpreter

run on

High-level code read and execute

I Interpreter reads high-level code, then alternates:
I Figure out next command
I Execute command

I May directly encode operational semantics

Examples: Python, Perl, Ruby, Bash, AWK, . . .
18 / 58

Example: CPython (‘normal’ Python)

Python source code
i = 0
while i <= 10:

print i
i += 1

0 LOAD_CONST 1 (1)
3 STORE_FAST 0 (i)

6 SETUP_LOOP 31 (to 40)
9 LOAD_FAST 0 (i)
12 LOAD_CONST 2 (10)
15 COMPARE_OP 1 (<=)
18 POP_JUMP_IF_FALSE 39

21 LOAD_FAST 0 (i)
24 PRINT_ITEM
25 PRINT_NEWLINE

26 LOAD_FAST 0 (i)
29 LOAD_CONST 1 (1)
32 INPLACE_ADD
33 STORE_FAST 0 (i)
36 JUMP_ABSOLUTE 9

39 POP_BLOCK
19 / 58

Python execution (simplified)

I Loop:
I Load next Python operation
I Which instruction is it? Jump to specialised code that knows
how to execute the instruction:

I Load parameters to operation
I Perform operation
I Continue to next operation

Executing e.g. an addition in CPython takes dozens of
assembly instructions

20 / 58

Compilation

Assembly code Assembler
Machine Code
(on disk)

Loader

Machine Code in RAM

CPU

load

run on

Compiler

High-level
Code

load

run on

compile to

Examples: C, C++, SML, Haskell, FORTRAN, . . .

21 / 58

Compiling and Linking in C

High-Level
Program

.c

Compiler

library
.a
.so
.dll

Assembly
Program

.s

.asm

Object
File

.o

.obj

Linker?
Binary
Program

.exe

Assembler

Binary program is machine code, can be run by CPU
22 / 58

Comparison: Compilation vs
Interpretation

Property Interpretation Compilation
Execution performance slow fast
Turnaround fast slow (compile & link)
Language flexibility high limited?

?) Compiler Optimisation Flexibility

23 / 58

Dynamic Compilation

I Idea: compile code while executing
I Theory: best of both worlds
I Practice:

I Difficult to build
I Memory usage can increase
I Performance can be higher than pre-compiled code

Examples: Java, Scala, C#, JavaScript, . . .

24 / 58

Summary

I Languages implemented via:
I stand-alone Compiler
I Interpreter
I Hybrid Implementation

I Part compiler, part interpreter
I May include: Dynamic Compiler

I Trade-off between:
I Language flexibility
I CPU time / RAM usage

I Languages may have multiple implementations
I Example: CPython vs. Jython
I gcc vs. llvm/clang vs. MSVC

25 / 58

Language Critique

I What is the best programming language?
I Best for what task?
I Measured by what criteria?
I Measurements obtained how?
(For most criteria, we don’t have good measurement tools!)

I Qualities of:
I the language
I the implementation(s)
I the available tooling
I the available libraries
I other infrastructure (user groups, books, . . .)

26 / 58

Criterion: Readability
I How easy is it to read software in the language?

A Program
++++++++[>++++[
>++>+++>+++>+<<
<<-]>+>+>->>+[<
]<-]>>.>---.+++
++++..+++.>>.<-
.<.+++.------.-
-------.>>+.>++.

I Program 1: √∑
v∈S

v 2

I Program 2:
Multiply each number in S with itself,
add up all the results to compute a
sum, and then give me the nonnegative
number that, when multiplied with
itself, is equal to that sum.

I Readability depends on:
I Problem domain (typical notation?)
I Reader’s background

I Multiple general characteristics help us understand readability
27 / 58

Simplicity

I Small number of features
I Minimal redundancy

Example
I Modula-3 language:
Design deliberately limited
to 50 pages

Counter-Example

Python
def d(x):

r = x[::-1]
return x == r

28 / 58

Orthogonality

I Features can be combined freely
I Minimal overlap between features

Example
I loops / conditionals may
contain other loops /
conditionals

I Many functional languages:
‘Everything is a value’

Counter-Example

C
// global variable section

float f1 = 2.0f * 2.0f;
float f2 = sqrt(2.0f); // error

29 / 58

Syntax Design
Example

C
if (cond)

print(a);
print(b);

⇓

Go
if cond {

print(a);
print(b);

}

Counter-Example

Fortran 95
program hello

implicit none
integer end, do
do = 0
end = 10
do do=do,end

print *,do
end do

end program hello

30 / 58

Data Types

I Datatypes can communicate intent
I Possibly enforce checking

Java
enum Color {

Red, Green, Blue
};
...
Color c = readColorFromUser();

31 / 58

Summary: Readability Characteristics

I Readability helps us understand code
I Core characteristics:

I Simplicity
I Orthogonality
I Syntax Design
I Datatypes

32 / 58

Criterion: Writability

I How easy is it to write software in the language?
I Characteristics that contribute to Readability
contribute to Writability

I Further criteria for Writability:
I Support for Abstraction

I over values (via variables)
I over expressions (via functions)
I over statements (via subprograms)
I over types. . .

I Expressivity

33 / 58

Criterion: Reliability

I How easy is it to write reliable software in the language?
I Criteria that contribute to Readability or Writability
also contribute to Reliability

I Further criteria:
I Type Checking

I The language prevents type errors (→ in two weeks)
I Exception Handling

I The language allows errors during execution to be systematically
escalated (→ in four weeks)

I Restricted Aliasing

34 / 58

Restricted Aliasing

Java
public static <T> void
concat(List<T> lhs, List<T> rhs) {

for (int i = 0; i < rhs.size(); i++) {
lhs.add(rhs.get(i));

}
}

concat(a, a);

I Attach rhs to the end of lhs
I This code misbehaves (infinite loop) when passed the same
list for both parameters

I Aliasing: two different names mean the same thing
35 / 58

Criterion: Cost

I Cost explains the investment needed to use a language:
I Training time
I Programming time
I Compilation time
I Run time
I Financial cost of special software
I Cost of limited reliability

I Maintenance time
I Insurance cost

36 / 58

Language Evaluation Summary
Readability Writability Reliability

Simplicity + + +
Orthogonality + + +
Types + + +
Syntax Design + + +
Abstraction Support + +
Expressivity + +
Type Checking +
Exception Handling +
Restricted Aliasing +

(this is Robert W. Sebesta, “Concepts of Programming
Languages”, Table 1.1)
I Separate dimension: Cost
I Alternative (more detailed) model: Green and Petre,
“Cognitive Dimensions of Notation”

37 / 58

Describing Languages

I Program structure
I Program meaning

I Well-formedness
I Runtime behaviour

38 / 58

What do programs mean?

Let’s run the following program in some language:

p r i n t (32767 + 1) ;

Which of the following outputs is correct?
I 32768
I 32767 + 1
I -32768
I octopus
I no visible output

Must know the language’s syntax and semancis

39 / 58

Structure and Meaning

Pragmatics: Intent
“I need more space on my disk”

Semantics: Meaning
“Delete all temporary files”

Syntax: Word choice & arrangement
rm -rf /tmp/*

40 / 58

Semantics

Semantics: The study of meaning (logic, linguistics)
I “meaning should follow structure”

I This is a hypothesis in linguistics
(seems to hold)

I And a proposal in logic
(turns out to work reasonably well)

Example:
I If expression ‘X’ has meaning ‘v’
I And expression ‘Y’ has meaning ‘w’
I Then expression ‘(X) / (Y)’ has meaning ‘whatever number
you get when you compute v

w ’

What if ‘v’ is not a number, or ‘w’ is zero?

41 / 58

Backus-Naur Form: Specifying Syntax
Assume nat is a natural number:
Formalise the rules with Backus-Naur-Form (BNF):
I ‘Any number is an expression.’

I 〈expr〉 −→ nat
I ‘Two expressions with a + between them form an expression.’

I 〈expr〉 −→ 〈expr〉+〈expr〉
I ‘Two expressions with a * between them form an expression.’

I 〈expr〉 −→ 〈expr〉*〈expr〉
Or in short:

〈expr〉 −→ nat | 〈expr〉+〈expr〉 | 〈expr〉*〈expr〉

I We call nat, +, * terminals
I We call 〈expr〉 a nonterminal
Nonterminals can appear on left-hand side of (−→)

42 / 58

Backus-Naur Form: Example

〈expr〉 −→ nat | 〈expr〉+〈expr〉 | 〈expr〉*〈expr〉

(1+2)*3

1+(2*3)

〈expr〉

〈expr〉

1 + 2 * 3

〈expr〉

〈expr〉

alternative parse:

a parse:

Ambiguity! Parsers must know which parse we mean!
43 / 58

Syntax of a Simple Toy Language

Syntax of language STOL:

〈expr〉 −→ nat
| 〈expr〉+〈expr〉
| ifnz〈expr〉then〈expr〉else〈expr〉

Examples:
I 5
I 5 + 27
I ifnz 5 + 2 then 0 else 1

44 / 58

Meaning of our Toy Language:
Examples

What we want the meaning to be:

5 5
5 + 27 32

ifnz 5 + 2 then 1 else 0 1

Can we describe this formally?

45 / 58

Defining Meaning

The principal schools of semantics:

Semantics

Denotational

NaturalNatural

Operational

Structural

Axiomatic

Algebraic

46 / 58

Operational Semantics: The two
branches

I Natural Semantics (Big-Step Semantics)
I p ⇓ v : p evaluates to v
I Describes complete evaluation
I Compact, useful to describe interpreters

I Structural Operational Semantics (Small-Step Semantics)
I p1 → p2: p1 evaluates one step to p2
I Captures individual evaluation steps
I Verbose/detailed, useful for formal proofs

47 / 58

Natural Semantics of our simple toy
language

n, n1, n2, n3 ∈ nat
e, e1, e2, e3 ∈ expr

n ⇓ n (val) e1 ⇓ n1 e2 ⇓ n2 n = n1+n2
e1+e2 ⇓ n (add)

e1 ⇓ n n 6= 0 e2 ⇓ n2
ifnz e1 then e2 else e3 ⇓ n2

(ifnz)

e1 ⇓ 0 e3 ⇓ n3
ifnz e1 then e2 else e3 ⇓ n3

(ifz)

Note:
I For simplicity, we set nat = N
I (+) is arithmetic addition
I + is a symbol in our language

48 / 58

Natural Semantics: Example

3 ⇓ 3 (val)
2 ⇓ 2 (val) 5 = 3 + 2
3 + 2 ⇓ 5 (add)

1 ⇓ 1 val

ifnz 3 + 2 then 1 else 0 ⇓ 1 (ifnz)

49 / 58

Natural (Operational) Semantics

P1 . . . Pn

⇓e v

Program/Expression Value

Preconditions

If P1, . . . , Pn all hold, then e evaluates to v .
I e: Arbitrary program (expression, in our example)
I v : Value that can’t be evaluated any further (natural
number, in our example)

50 / 58

Extending our language with ‘let’

Name bindings x ∈ name:

〈expr〉 −→ nat
| 〈expr〉+〈expr〉
| ifnz〈expr〉then〈expr〉else〈expr〉
| name
| let name =〈expr〉in〈expr〉

Example:
let x = 2 + 3 in x + x ⇓ 10

But how can we describe x ⇓ . . . by itself?

51 / 58

Environments

I With variables, the meaning of program depends on their
environment

Environment: E : name→ value

I Environments are partial functions from names to ‘values’
I In our running example, value = nat
Notation:
E (x) look up value for x
E [x 7→ v] update environment E , x maps to v

E [x 7→ v](y) =
{

v ⇐⇒ y = x
E (y) otherwise

52 / 58

Environments in Natural Semantics
We borrow the turnstile (`) from formal logic:

E ` n ⇓ n (val) E ` e1 ⇓ n1 E ` e2 ⇓ n2 n = n1 + n2
E ` e1+e2 ⇓ n (add)

E ` e1 ⇓ n n 6= 0 E ` e2 ⇓ n2
E ` ifnz e1 then e2 else e3 ⇓ n2

(ifnz)

E ` e1 ⇓ 0 E ` e3 ⇓ n3
E ` ifnz e1 then e2 else e3 ⇓ n3

(ifz)

E (x) = v
E ` x ⇓ v (var)

E ` e1 ⇓ v (E [x 7→ v]) ` e2 ⇓ v ′

E ` let x=e1 in e2 ⇓ v ′ (let)

53 / 58

Summary
I Natural Semantics describe program behaviour through
reduction rules

I Analogous to interpreters
I Notation: p ⇓ v

I p: program
I v : value (cannot be reduced further)

I Uses inference rules:
preconditions

p ⇓ v

I Can pass extra parameters (e.g., environment for variable
bindings):

A, B, C ` p ⇓ v
I Requires well-formed program

54 / 58

Program Well-Formedness

I Consider the program a + b
I E (a) and E (b) will be undefined
I Compiler would issue error message

I Other examples:
I References to modules that don’t exist
I Type errors
I Function definition without return statement

I Static semantics: analysis and error-checking before execution

55 / 58

Describing Languages revisited

I Program structure: Syntax
I Program meaning: Semantics

I Well-formedness: Static Semantics
I Runtime behaviour: Dynamic Semantics

56 / 58

Daily Summary

I Languages vs. Language Implementations
I Implementation tyoes

I Interpreter, Compiler, Hybrid Implementation
I Language evaluation criteria:

I Readability, Writability, Reliability, Cost
I Various characteristics contribute to the criteria

I Syntax: Backus-Naur Form (BNF)
I Semantics: Program behaviour

I Static: Well-formedness
I Dynamic: Run-time behaviour (only for well-formed code)

57 / 58

Next Week

I Syntax
I Variables, Binding, Scope
I Semantics
I Basic Expressions
I Primitive Types

Read the listed parts of the book, bring your questions!

58 / 58

