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Static type checking can help us us catch errors early. It thus contributes to the robustness of statically typed
languages. Static type checking depends on the availability of static type information throughout the program:
we must be able to statically assign types to all values and expressions. We usually accomplish this through a
combination of automation (e.g., static typing rules) and explicit user speci�cations (e.g., type declarations for
variables).

As helpful as they are for �nding bugs, static types are imprecise in practice. Consider division: to ensure
that we are not dividing by 0, we could require the right-hand side parameter of the division parameter to be of
a type that excludes zeroes (e.g., a subrange type whose lower bound is greater than zero or whose upper bound
is less than zero).

While this idea may be appealing, it quickly runs into limitations. Consider the following Mystery example:

VAR l ower : [−10 TO −1] ;
VAR upper : [ 1 TO 1 0 ] ;
VAR combined : [−10 TO 1 0 ]
BEGIN

l ower : = readA ( ) ;
upper : = readB ( ) ;
IF s e l e c t ( )
THEN combined : = lower
ELSE combined : = upper ;
PRINT d i v i d e ( 1 0 0 , combined )

END

Here, the types of upper and lower guarantee that neither variable can be zero. However, during the IF statement,
we may assign either of them to the variable combined. This means that we must give combined a type that can
contain both the range from−10 to−1 and the range from 1 to 10. There are many types we could choose (such
as INTEGER or [-100 TO 25]), but intuitively [-10 TO 10] is the ‘best’ type that we can give combined because it
allows all the values that lower and upper may contain, and a minimum of ‘other’ values (namely the value zero).

The inclusion of zero is unfortunate: if combined had a type that did not include zero, we could be certain
that the call to divide will not cause a division by zero, but as it stands, the type system does not give us that
guarantee. This restriction has real-life consequences: �rst, the compiler may not be able to optimise the code
and may introduce extra code to handle a division by zero that can never happen. Second, if we use this code
for a security-critical application, we may not be able to automatically show that it cannot fail and may have to
perform an additional audit here.

What we see here is an example of imprecision or conservativeness: the type system cannot precisely ex-
press the possible values that combined may take, so it forces us to describe the properties of combined more
conservatively.

Since at least the late 1970s, researchers have been looking for techniques that allow us to express more
interesting and useful types. The focus in this research has been on catching bugs early: while type information
remains valuable to compiler optimisation and thus to the task of reducing execution cost, modern compilers
have additional techniques for program analysis at their disposal that we are not going to cover in this course1

1These are discussed in EDAP15: ‘Program Analysis’.
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To improve the utility of types, researchers and language designers have had to fend with tradeo�s between
the following:

• Precision: How accurately can we make types capture the behaviour of a value, expression, subprogram,
or other program concept? This concept ties into the question of Increasing Reliability.

• Automation: How much type-checking can we do while still being certain that the type-checking mecha-
nism will eventually (and, ideally, quickly) �nish? This concept ties into the question of Reducing Compile-
Time Cost and more generally Reducing Development Cost.

• User-Friendliness: At what point does writing and reading types become too unwieldy to be practical
for users? This concept ties into several of the Readability and Writability criteria.

In this handout, we describe the highlights of this research, that is, type systems that are practical enough to
have been integrated into major programming languages. We will focus on polymorphism, the idea that part of a
program can have multiple (poly) forms (morph), and related topics. The following sections cover the three key
forms of polymorphism that we �nd in the literature:

1. Parametric Polymorphism (Section 2), which allows us to say ‘this value has a type, but you don’t need to
know what it is’.

2. ‘Ad-Hoc’ Polymorphism (Section 3), which allows us to say ‘this value has a type, and you don’t need to
know what it is, but here are a few things you can do with it’.

3. Subtype Polymorphism (Section 5), which allows us to say ‘this value has a type, and while you don’t know
what exact type it is, that type is a more restricted (or more general) version of this other type that you do
know, so therefore there are some things you know you can do with it’.

1 Background: Function Types and Tuple Types
Subroutines play a crucial role in the discussions of this handout, so we will introduce some auxiliary notation
to discuss them.

As we have seen in class, some languages allow us to return subroutines as return values, to pass them
as parameters, or to store them in variables. In most such languages, the subroutines are stored as closures2.
Subprograms can thus be values in the same way that numbers, tuples, and records are, and analogously have
types that comprise the types of both their return values and parameters. Di�erent languages use di�erent
notation for the types of subprograms; in Mystery, we might write the following for a variable p that takes two
integers and returns value of type STRING:

VAR p : PROCEDURE(x: INTEGER, y: INTEGER) : STRING

While Mystery has no support for string values, we can still de�ne the name STRING as a type. Figure 1
summarises the notation for other languages. As we can see, the notation varies considerably. The early type
systems literature in computer science uses the notation

p : int× int→ string

which is re�ected directly in Standard ML (SML), with int× int representing the type of a tuple of two ele-
ments, both of which have type int.

More recent languages, including the more imperative languages Rust and Scala use notation closer to Haskell’s
style:

(int, int)→ string

2As an aside, C and other low-level languages don’t use closures but instead provide pointers to executable code; in other words, they
support a limited form of closures in which the environment of the closures is always empty. C programmers often work around this
limitation by adding an extra ‘environment’ parameter to these function pointers.
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Language Type Comments
Mystery VAR p : PROCEDURE(x: INTEGER, y: INTEGER) : STRING STRING not built in
Go var p func(int, int)string
C char* (*p)(int, int) Not a closure type
Java java.util.functional.BiFunctor<Integer, Integer, String> p Convenience interface only
Scala var p: (Int, Int) => String
Haskell p :: (Int, Int) -> String
SML val p : int * int -> string
Rust let p : fn(i32, i32) -> &’static str static speci�es lifetime of string

Figure 1: Comparison of how to declare a variable p to have the type of a subroutine from two integers to one
string, in various languages

In the following, we will adopt their notation. That is, for the type of a tuple of an integer, a boolean, and a
string we will write

(int, bool, string)

and for the type of a function from integers to integers we will write

int→ int

For the type of functions with multiple parameters of types τ1, . . . , τk we will combine these two notations
(as in the above) and write the type of a function that takes a single parameter, where the type of the single
parameter is the tuple type (τ1, . . . , τk).

The empty tuple type () describes the type of tuples that contain no useful information. This type is also
called the unit type (e.g. in Scala and SML); languages in the C family call this type void. We mostly �nd the unit
type in operations that we call for their side e�ects. For instance, a printing function might have the type

printString : string→ ()

while a function that reads input might have the type

readString : ()→ string

2 Parametric Polymorphism
When developing larger software systems, we often develop helper functions for use in more than one location.
Consider the following subprogram in a statically typed language with Scala-like syntax3:

/ / I n c o m p l e t e subprogram
def makeIntArray ( l e n : Int , i n i t i a l : Int ) = {

val r e s u l t = new Array ( l e n ) ; / / c r e a t e a r r a y with ’ l e n ’ e n t r i e s
for ( i <− 0 to ( l e n − 1 ) ) {

r e s u l t . update ( i , i n i t i a l )
}
return r e s u l t

}

3This subprogram isn’t completely valid Scala yet, we revisit it in Section 4.3 to �x that.
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This subroutine builds an Array of length len in which each element has the value initial. Similar operations
exist ‘out in the wild’ e.g. in the standard libraries of languages in the ML language family. With this operation
we can now quickly create arrays of any length that are initialised to 0 (useful as neutral elements for addition),
1 (useful as neutral element for multiplication), −1 (perhaps as a marker to indicate that a number is unused in
an array that should otherwise only contain positive numbers) and so on, depending on our needs.

We may �nd this operation useful enough that we may the same operation for building an array for Float
values:

def makeF loatArray ( l e n : Int , i n i t i a l : Float ) = {
. . .

}

I have omitted the body of this subroutine because it is exactly identical to the previous one; the only change
is in the type of the parameter initial. The fact that we had to copy the rest of this code without modi�cation is
worrying; clearly we do not want to do the same for all other potentially interesting types. In a dynamically typed
language we could have omitted the type of initial and reused the code for any (dynamic) type, but at the cost
of losing static type checking; if we want to keep the bene�ts of static type checking but avoid copy-and-paste
programming, we have to �nd a better solution.

To understand the problem, let us turn towards a smaller but very similar problem, namely the so-called
identity function:

def i d I n t ( x : Int ) : Int = x
def i d S t r ( x : Str ) : Str = x

This function just returns its sole parameter, unchanged. The parameter’s type occurs in two places: as type
of the parameter itself, and as type of the subroutine’s return type. This equality between input type and output
type is crucial: it does not make sense for an identity function that takes an Int parameter to return a value of
type Str.

To allow us to write these two identity functions as one single identity function while ensuring static type
checking, we need a new language mechanism. The purpose of this language mechanism is then to abstract over
types (our Int and Str) and allow us to use these types without knowing their exact form. As it turns out, we have
already studied a very similar mechanism in our initial computer science courses, namely parameters. We can
simply turn the type of the parameter x into a type parameter :

def i d [T ] ( x : T ) : T = x

Just as with other parameters, we now have to specify this parameter when we call id4. We again use Scala
notation:

val one = i d [ I n t ] ( 1 )
val h e l l o = i d [ S t r i n g ] ( S t r i n g )

Analogously to parameters to other subprograms, we refer to the type variable T as formal type parameter,
and to Int in the subprogram call id[Int](1) as actual type parameter to id.

This feature is called Parametric Polymorphism; it is (to the best of my knowledge) universally supported
by all nontrivial statically typed functional languages, as well as by Scala, Ei�el, and Java. Java which uses the
following notation:

4Some languages (Scala, Java) are able to automatically determine type parameters statically in some situations.
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public c l a s s X {
s t a t i c <T> T i d ( T x ) {

return x ;
}

int x = X . < Integer> i d ( 2 ) ;
}

C++ provides templates, a mechanism that is syntactically similar to the notation used by Java (in fact, C++’
syntax originally motivated Java’s syntax). However, templates are a more general meta-programming feature
that we will not be able to cover within this course.

Outside of the functional world, language designers often refer to parametric polymorphism as Generics, and
to subprograms that make use of parametric polymorphism as generic subprograms.

3 Typeclasses
Type parameters allow us write subprograms that operate on any type of parameter. We can now easily write
e.g. a subprogram that swaps the elements in a tuple, irrespectively of what their types are:

def swap [ T , U ] ( x : T , y : U ) : (U, T) = ( y , x )

However, the use of type parameters also means that our subroutine no longer knows anything about its
parameters. Consider the following subprogram that computes the maximum of two Int parameters:

def maxInt ( x : Int , y : Int ) : Int = {
i f ( x > y ) {

return x
} e l se {

return y
}

}

Clearly this subprogram should also work for other types, such as Float or String, so we might like to write:

def max [T ] ( x : T , y : T ) : T = {
i f ( x > y ) {

return x
} e l se {

return y
}

} / / WARNING : t h i s w i l l not work !

If we ask Scala to compile this code, the Scala compiler will report the following error (with some formatting
added and some irrelevant details elided):

> is not a member of type parameter T

In other words, Scala refuses to accept this generic subprogram because the type parameter T has no greater-than
operation (>).

This may seem confounding at �rst — after all, we only intend to use this function with type parameters like
Int and Float, for which the greater-than operation is clearly de�ned! However, our earlier attempt at de�ning a
generic max subprogram placed no such restriction on T.
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Recall that types e�ectively model the program and therefore must describe everything that might happen.
They are thus contracts between the compiler and the programmer: if the compiler accepts a type for a given
subprogram, then this contract requires that the subroutine must also return a result of the matching type, no
matter what parameters (type or otherwise) it eventually receives5. In our attempt at writing the generic subpro-
gram max, this contract was ‘the subprogram takes in two parameters of any arbitrary type, but both parameters
must have the same type, and the subprogram will return a value of that exact same type’.

What we really wanted, though, was not a subprogram that is completely generic over every type T, but only
one that is generic over some types T for which we have an ‘is-greater-than’ operation.

In other words, we want to constrain the type T. By constraining T, we are asking for a less generous contract
from the compiler. There are two main approaches for formulating this constraint; we will discuss the �rst one
here, and the second in Section 7.2. To simplify our discussion, we switch to the language Rust.

The Rust code below is equivalent to the max subprogram that we wrote for Scala above:

fn max2<T >( x : T , y : T ) –> T {
i f x > y {

return x ;
} e l se {

return y ;
} }

Correspondingly, the Rust compiler will complain to us about this code but helpfully tell us that we can add
a type constraint to bound the type variable T by a Rust trait of the name std::cmp::PartialOrd. If we thus change
our Rust code to read

fn max2<T >( x : T , y : T ) –> T where T : std::cmp::PartialOrd {
. . .

our code compiles! Moreover, we can now use the max2 subroutine on various parameters of types for which
the greater-than relation is de�ned. If we try to call max2 on a type for which Rust does not know how to compute
the > relation, such as the code

s t r u c t MyRecord { . . . } / / custom r e c o r d type

l e t r 1 : MyRecord ;
l e t r 2 : MyRecord ;
l e t r 3 : MyRecord = max2 : : < MyRecord >( r1 , r 2 ) ;

then the Rust compiler will complain at the subroutine call that we have not explained how the greater-than
operation works for our MyRecord type. Crucially, the compiler reports an error at the site at which we try to
call max2: the compiler successfully compiled max2 with our updated contract and here reminded us that we
violated the contract that we had set up for ourselves.

The general form of this particular form of constraining type parameters was �rst introduced into the lan-
guage Haskell under the name typeclasses, which is also the language-agnostic term for them. Rust instead calls
it traits.

Beware: The concept of a typeclass is fundamentally di�erent from the concept of a class in object-oriented
programming (which we will cover later). Similarly, Rust traits are fundamentally di�erent from Scala traits.

Scala also allows us to use typeclasses, but doing so relies on a feature called implicit parameters (subroutine
parameters that are passed automatically based on their type) that is speci�c to Scala; we will not be covering it
in this course.

5Most languages allow a small number of exceptions to these contracts, most commonly that the subroutine can ‘get stuck’ in an endless
loop or halt the program if it runs out of memory, but these exceptions do not help us here.
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3.1 De�ning our own Typeclass / Rust Trait
Languages that support typeclasses (Rust, Haskell, Clean, Scala) allow us to use custom user-de�ned operations
and use them in type bounds. To see this, let us reformulate our max2 subroutine into a subroutine that works
without the built-in > operator and instead relies on the following operation that we will de�ne ourselves:

greater : (T, T)→ bool

We will require that any type T that wishes to be part of our typeclass provides this operation. Below, we
formalise this operation as a typeclass GT, in the form of a Rust trait:

t r a i t GT {
fn g r e a t e r (Self , Self ) –> bool ;

}

Here, the keyword Self is a reference to whichever type wants to be part of our typeclass (or ‘have the trait
GT’, if we use Rust parlance).

Note that typeclasses may ask for more than one operation. We will later see the utility of this feature, when
de�ning abstract datatypes.

With our new typeclass we can now re-de�ne our maximum function as max3:

fn max3<T >( x : T , y : T ) –> T where T : GT + Copy {
i f GT : : g r e a t e r ( x , y ) {

return x ;
} e l se {

return y ;
} }

This de�nition is almost identical to that of max2, except that we use the operation GT::greater instead of the
operator >, and the type bound GT + Copy instead of std::cmp::PartialOrd.

This type bound GT + Copy means any types T must be bounded both by our trait GT, but also by a special
built-in trait Copy that Rust requires for values that can be copied. This additional detail is speci�c to Rust
(which has a unique memory and lifetime management system) and does not apply to other languages that use
typeclasses.

Before we can now call our function to compute the maximum of two values, we have to make the type of
these values a member of our typeclass. For example, to be able to compute the maximum of i32 values (Rusts
signed 32 bit numbers), as in the call

max3 : : < i 32 > ( 7 , 1 3 )

we have to provide an implementation of the operations in the typeclass GT for i32. The Rust syntax is as
follows:

impl GT for i32 {
fn g r e a t e r ( x : i32 , y : i32 ) –> bool {

return x > y ;
} }

In other words, we specify a concrete instance of the abstract operation

greater : (T, T)→ bool

where our concrete instance has the type

7



greater : (i32, i32)→ bool

Each such typeclass instance (Haskell terminology) or trait implementation (Rust terminology) will allow the
instantiating / implementing type to participate in any operations that require our type bound GT.

The typeclass mechanism in the languages Haskell and Clean is analogous.

3.2 Connection to Operator Overloading
Another way to look at typeclasses / traits is that they give us a means for user-de�ned overloading 6. Typeclasses
de�ne the operators and operations that we may want to overload, whereas typeclass instances simultaneously
declare that a certain type overloads a given operator and explain the semantics of the overloading for that type.

Typeclasses are not the only mechanism for user-de�ned operator overloading — Sebesta discusses two alter-
native mechanisms in Section 9.11, one for C++ and one for Python. All of these approaches have their individual
strengths and weaknesses, though we wait with a discussion of the di�erences until we have explored object-
oriented programming (which is the foundation to Python’s approach).

Operator overloading is one of the three main forms of polymorphism, under the somewhat derisive name
Ad-Hoc Polymorphism. This name predates the introduction of typeclasses as a more systematic mechanism for
managing overloading, so it is possible that we will in the future refer to this form of polymorphism as trait
polymorphism or typeclass polymorphism.

4 Abstract Datatypes
To see what parametric polymorphism and typeclasses allow us to do, let us take a brief trip back in history. In
the late 1960s, software development had reached a crisis: companies like IBM were trying to maintain pieces
of software, such as the operating system OS/360, with its ten million lines of assembly code (considered a very
large software systems by the standards of the day), but struggled to keep the rate of bug �xes at the same pace
as the rate of bug reports. This crisis ultimately led to many innovations, including the invention of the �eld of
Software Engineering, One of these innovations was the direct result of some key observations of the time:

Developers were writing code modules that directly referenced implementation details in other modules. As
a result, changes in these other modules risked unforeseen disruptions elsewhere in the code — in other words,
once a developer had committed to a particular code or data structure, they could not change it any more, since
unknown external modules might depend on those implementation details.

Programming language designers took this insight as a basis for developing mechanisms that would allow
software module designers to hide internal (and often accidental) implementation details so that other modules
could only access a more restricted (and more intentional) view of each module. They adopted the term informa-
tion hiding for the process of hiding such details.

4.1 Information Hiding and Encapsulation
The researcher David Parnas, who was central in the early work on information hiding, summarised his perspec-
tive on information hiding as follows7:

“The major advancement in the area of modular programming has been the development of coding
techniques and assemblers which (l) allow one module to be written with little knowledge of the
code in another module, and (2) allow modules to be reassembled and replaced without reassembly
of the whole system. This facility is extremely valuable for the production of large pieces of code
[...].”

6Cf. ‘How to make ad-hoc polymorphism less ad hoc’ Wadler, Blott in POPL’89
7David L. Parnas, ‘On the criteria to be used in decomposing systems into modules.’ Communications of the ACM, 15(12):1053–1058,

1972.
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Interface

Abstract Datatype IntVector

Operations:
• create : int→ IntVector

• length : IntVector→ int

• append : (IntVector, int)→ ()

• get : (IntVector, int)→ int
. . .

Speci�cation:

• if ` = length(v) and we call append(v, x)
once, then afterwards length(v) = `+ 1

• get(create(`), i) = 0 if i ∈ {0, . . . , `−1}, oth-
erwise there is an error
. . .

Implementation

ArrayBasedVector

ListBasedVector

BTreeBasedVector

. . .

Figure 2: Abstract Datatype (ADT) as interface and datastructures that implement the ADT

He continues to discuss how in a case study, applying the idea of information hiding led to a design where ‘[a]
data structure, its internal linkings, accessing procedures and modifying procedures are part of a single module’
instead of split across many modules as was then common. This insight gives us a concrete strategy for how one
can hide such implementation details, and led to the idea of Encapsulation.

Encapsulation in turn is one strategy for information hiding. Alan Snyder de�nes it as follows8:

“Encapsulation is a technique for minimizing interdependencies among separately-written modules
by de�ning strict external interfaces. The external interface of a module serves as a contract between
the module and its clients, and thus between the designer of the module and other designers. If
clients depend only on the external interface, the module can be reimplemented without a�ecting
any clients, so long as the new implementation supports the same (or an upward compatible) external
interface. Thus, the e�ects of compatible changes can be con�ned.
“A module is encapsulated if clients are restricted by the de�nition of the programming language
to access the module only via its de�ned external interface. Encapsulation thus assures designers
that compatible changes can be made safely, which facilitates program evolution and maintenance.
These bene�ts are especially important for large systems and long-lived data.”

Encapsulation in Snyder’s view then requires explicit programming language support to separate the interface
to a module from its implementation. This means that when we de�ne a piece of functionality, we describe it at
least twice: once in the interface (for public consumption) and once in the implementation.

We can also use encapsulation to de�ne new datatypes. This leads us to datatypes whose abstract interfaces
can be re-used by multiple implementations. The term for these datatypes is Abstract Datatypes or ADTs.

Figure 2 illustrates this idea: here (on the left-hand side) we de�ne a single abstract datatype, IntVector, in the
style of a heap-dynamic array that allows both appending elements (append) and random access to each element
(get). Operations like append, length, and get make up the interface of the datatype.

On the right-hand side we list several possible implementations of this datatype: we could implement it
using arrays, lists, BTrees, but also in other ways (e.g., storing it on the harddisk or in a database). That is, each

8Alan Snyder: ‘Encapsulation and Inheritance in Object-Oriented Programming Languages’, Proceedings of OOPSLA’86.
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abstract datatype can be implemented by potentially many di�erent datastructures. Ideally, this could allow us
to switch out one of the datastructures for another without substantially altering the behaviour of the program,
e.g., to replace a datastructure with a bug by one without that bug, or to replace a fast but memory-intensive
datastructure by a slower but more memory-e�cient datastructure when our program must scale up to larger
datasets.

However, to be able to do so we must place stronger requirements on the datastructures than just what
interface operations they should support. After all, the following Python program implements the above interface
perfectly well:

I n t V e c t o r = bool

def c r e a t e ( len : in t ) −> I n t V e c t o r :
return F a l s e

def l e n g t h ( v : I n t V e c t o r ) −> in t :
return 0

def append ( v : I n t V e c t o r , v a l u e : in t ) :
pass # r e t u r n noth ing

def g e t ( v : I n t V e c t o r , o f f s e t : in t ) −> in t :
return 0

Yet this implementation will be entirely useless, as it does not capture the behaviour that we want out of an
IntVector datatype. For that reason, abstract datatypes are accompanied by descriptions of this desired behaviour.
Figure 2 lists some in its Speci�cation section, requiring (among other things) that calling append will result in
later calls to length returning one more than before the call to append.

How to describe these speci�cations is a �eld of research in its own right. The main formal strategies revolve
around axiomatic speci�cations (similar to the ones from Figure 2) and operational semantics (such as our natural
semantics).

However, there is some disagreement on how much we should specify. The more precise the speci�cation is,
the more the user of an abstract datatype can rely on common behaviour, but the more constrained the imple-
menter of a datastructure for such a datatype is. For instance, if we do not specify what happens when we call get
with a negative index, then this may enable some datastructure implementers to avoid checking the parameter
and thus produce more e�cient implementations. On the other hand, it also means that for some datastructures,
bugs in code that call get(v, -1) might go undetected, whereas for others they might not.

Another example of this debate revolves around whether the speci�cations of ADTs should only include the
return types of operations, or also memory and time usage. For example, the C++ Standard Template Library
(STL) and the Java standard library specify a number of ADTs along with their asymptotic complexity. In our
example, we might require that our get operation should take O(1) time over the size of the IntVector, which
would rule out a list-based implementation of the vector.

As it turns out, Parnas already formulated these ideas in 19719, while discussing the idea of combining infor-
mation hiding in modules with a speci�cation:

1. “The speci�cation must provide to the intended user all the information that [they] will need to use the
program correctly, and nothing more.”

2. “The speci�cation must provide to the implementer, all the information that [they need] to complete the
program, and no additional information [...].”

3. Parnas also asks that the speci�cation should ideally be su�ciently formal to be machine-testable, and

4. that the speci�cation should use language that is usually used by implementers and users to describe
concepts in the problem domain into which the ADT best �ts.

9David L. Parnas, ‘A Paradigm for Software Module Speci�cation with Examples’, Technical Report, CMU, 1971
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4.2 Building Abstract Datatypes
ADTs are a close �t to our typeclasses. For instance, we can compactly describe our IntVector datatype as a Rust
trait:

t r a i t IntVector {
fn c r e a t e ( i32 ) –> Self ;
fn l e n g t h (Self ) –> i32 ;
fn append (Self , i32 ) ; // no return value
fn g e t (Self , i32 ) –> i32 ;

}

Of course, this description does not include a behavioural speci�cation, though we could write generic unit
tests to automatically check for at least partial adherence to the speci�cation. We can now provide implementa-
tions of this ADT as we did in Section 3.

4.3 Generic Abstract Datatypes
While we have now built an ADT for storing integer values, we �nd ourselves in a similar situation as at the
beginning of Section 2: wouldn’t it be better if we could use this ‘Vector’ ADT to store types other than int32
values? In other words, can we parameterise the Vector ADT to abstract out the type of its elements? The
literature calls such type-parametric ADTs Generic ADTs.

Indeed Rust supports what we want and allows us to introduce a type variable for the elements of our vector:

t r a i t Vector<T> {
fn c r e a t e ( ) –> Self ; // changed to always start out empty
fn l e n g t h (Self ) –> i32 ;
fn append (Self , T ) ;
fn g e t (Self , i32 ) –> T ;

}

The scope of this type variable T is now not just the type of an individual subroutine. It is the type of the
entire trait (and, consequently, the type of any datastructure that wants to implement this trait).

As before, our datastructures are not allowed to do anything with values of type T, since we told the compiler
that we want any type to �t in. As before, we may want to restrict ourselves to types that provide certain
functionality. For example, a generic ADT priority queue may need to be able to tell which of its elements
has the highest priority, so we may want the elements to be comparable via the greater-than operator (>). The
solution is the same as before: we restrict our type parameter T by requiring it to be an element in a pre-existing
typeclass (in Rust, std::cmp::PartialOrd). This ensures that the actual type parameter for T provides support for
comparison:

t r a i t Priority�eue<T> where T : std::cmp::PartialOrd {
fn c r e a t e ( ) –> Self ;
fn push (Self , T ) ;
fn getTop (Self ) –> T ;

}

While Haskell and Clean have a di�erent notion of state and updates (which is why we did not use them for
these examples), they support the same features as far as the type system is concerned.

Generic ADTs are widely supported in modern languages. For example, we can de�ne a type Vector[T] in
Scala that is analogous to the above (Section 7). The code below is then a variation of our earlier ‘create a pre-
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initialised array’ code for Scala, with a custom type Vector[T] instead of Array[T]10:

def makeVector [T ] ( l e n : Int , i n i t i a l : T ) : Vector[T] = {
/ / c r e a t e heap−dynamic a r r a y with ’ l e n ’ e n t r i e s :
val r e s u l t : Vector[T] = new Vector[T] ( l e n )
for ( i <− 0 to ( l e n − 1 ) ) {

r e s u l t . update ( i , i n i t i a l )
}
return r e s u l t

}

5 Subtype Polymorphism
The third and �nal form of polymorphism that we discuss here is subtype polymorphism.

Consider the following variable declarations in Mystery:

VAR a : ARRAY[0 TO 10] OF INTEGER ;
VAR x : [0 TO 10] ;
VAR y : [2 TO 5]

Here, we see that it is statically safe to index the array a with the variable x, i.e., to write a[x], without any
dynamic checking, since the valid indices for a are in [0 TO 10] and we also have x : [0 TO 10].

However, it is also statically safe to write a[y], even though y has a type that is di�erent from the array’s
index range. The underlying reason is that the set that represents the type [2 TO 5] is a subset of the set that
represents [0 TO 10], i.e.,

[2 TO 5] ⊆ [0 TO 10]

We say that ‘[2 TO 5]’ is a subtype of ‘[0 TO 10]’, or conversely that ‘[0 TO 10]’ is a supertype of ‘[2 TO 5],
notation

[2 TO 5] <: [0 TO 10]

De�nition 1 A type T is a subtype of type U, notation T <: U or U :> T, if any value v : T can be used in any
context that requires a value of type U11

For example, we have:

• [2 TO 5] <: [2 TO 6]

• [2 TO 5] <: [1 TO 5]

• [2 TO 5] <: [1 TO 6]

• [2 TO 5] <: INTEGER

Moreover, since supertyping and subtyping are based on the subset relation, they inherit two few useful
properties: �rst, they are re�exive i.e., each type T is a subtype (and supertype) of itself, T <: T, and second, they
are transitive, meaning that whenever we know that T <: U and U <: V, we also know that T <: V.

Whenever we use a value of a subtype in a place that expects a supertype, the language must perform a
widening conversion. In most languages that support subtyping, this conversion is implicit, since it is safe. Some

10Implementing the same example with type Array[T] in Scala would require us to provide a class tag for T, an object that represents the
dynamic type of T, due to technical complications at the level of the Java Virtual Machine.

11Based on the de�nition by Kim Bruce, ‘Foundations of Object Oriented Languages: Types and Semantics’, MIT Press, 2002
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languages also allow us to translate a supertype to a subtype, using a narrowing conversion. This conversion
may fail, so it is usually an explicit operation.

For example, let us assume that SmallInt <: BigInt. In Java we can write

SmallInt s m a l l = r e a d S m a l l I n t ( ) ;
BigInt b i g = s m a l l ; / / i m p l i c i t widening c o n v e r s i o n

b i g = r e a d B i g I n t ( ) ;
s m a l l = ( SmallInt ) b i g ; / / e x p l i c i t nar rowing c o n v e r s i o n r e q u i r e d

where the narrowing conversion may fail at runtime.
Many languages that support subtyping allow us to explicitly check at runtime whether a narrowing con-

version will succeed or fail (e.g., using the instanceof operator in Java). The language Swift even supports a
combined check and conversion operation:

i f l e t s m a l l = b i g as? SmallInt {
. . . / / on ly e x e c u t e d i f b i g < : S m a l l I n t

}

5.1 Subtyping and Records
As we de�ned, subtyping allows us to talk about when values of one type can be used in a place that expects a
value of another type. For example, consider the following two record types in Modula-3:

TYPE TR1 = RECORD
VAR x : INTEGER ;

END

TYPE TR2 = RECORD
VAR x : INTEGER ;
VAR y : STRING ;

END

Any operation that expects a record of type TR1 (e.g., a subroutine that prints the number from �eld x to the
screen) can in principle also work with a record of type TR2, so we have

TR2 <: TR1

This may be counter-intuitive at �rst glance, since TR2 appears to be visually ‘bigger’ than TR1. To understand
why the above makes sense, consider the question of what we can do with values of this type: For TR1 all we
can do is to read/write integers from/to a �eld x, or store them there. For TR2 we can do all that we can do for
TR1, and also read/write strings from/to a �eld y. In other words, TR2 satis�es stronger constraints, just like the
subrange type [2 TO 5] satis�es stronger constraints than the subrange type [0 TO 10].

As we have seen, adding new �elds to a record creates a subtype. Changing the types of the �elds may also
an option, but this depends on the semantics of records in the underlying language, so we will return to this
question in Section 5.3.

5.2 Subtyping Subprograms
Consider the following Mystery subprogram sub:
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input −→

−→ output

T1

T2

function

U2

U1

Figure 3: Subroutine subtyping: if we need a subroutine with function type T2 → U2, we can instead provide
a subroutine of type T1 → U1 if T1 is less constrained than T2 and if U1 is more constrained than U2, in other
words, if we think of the function in the middle as a funnel whose opening we can widen and whose end we can
narrow.

1 PROCEDURE sub ( p : PROCEDURE(x: [0 TO 1]) : [0 TO 1] ) =
2 VAR v : [0 TO 1] ;
3 VAR w : [0 TO 1]
4 BEGIN
5 v : = p ( 0 ) ;
6 w : = p ( 1 ) ;
7 . . .
8 END

This subprogram takes a subprogram parameter of function type

p : [0 TO 1]→ [0 TO 1]

If we have a subprogram q of a di�erent type, we may or may not be able to pass q as a parameter to sub. Let
us carefully consider the cases, assuming in-mode parameter passing (e.g., Pass-by-Value):

1. Return type: If our subroutine q returns something that is a subtype of [0 TO 1] (such as [0 TO 0], which
must always be 0), then sub(q) will work just �ne: the only change is that v and w will always be assigned 0.
However, if our subroutine returns a strict supertype such as INTEGER, then we could at runtime attempt
to assign any integer value to v and w. Thus, the return type of q must be a subtype of the return
type of p.

2. Parameter type: If our subroutine q only accepts something that is a subtype of [0 TO 1] (such as [0 TO
0], then it will not be able to process the call p(0) in line 5 or the call p(1) in lines 6.
However, q can be more generous about accepting parameters: if it accepts any supertype, such as INTE-
GER, sub will still be able to run without a risk of failure. Thus, the type of the parameter of q must
be a supertype of the type of the parameter p.

Figure 3 visualises these considerations. We can formalise them compactly in the so-called arrow rule:

T1 :> T2 U1 <: U2

T1 → U1 <: T2 → U2

As we will see later, the rule for parameter passing �ips around for out-mode parameter passing, since we
(in essence) add additional return values.
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As with other forms of subtyping, some languages may be less generous than what the most general form of
subtyping might allow. For example, early versions of Java (before version 5.0) only permitted parameter types
of methods (analogous to subroutines) to change, but not return types.

5.3 Subtyping and Updates
Most languages allow us to pass parameters in a way that persists changes to the parameter, e.g., through Pass
by Reference or through some other in-out parameter passing mechanism. For example, many languages from
the C family pass arrays by reference. Subtyping for mutable values raises some questions that we didn’t see for
e.g. our subrange values.

Let us consider the following Mystery program, and assume that we pass all parameters by reference or
through another in-out parameter passing mode:

1 PROCEDURE upd ( x : [1 TO 5] ) =
2 VAR y : [1 TO 5]
3 BEGIN
4 y : = x ; ← read from reference cell
5 IF y == 1
6 THEN x : = 1
7 ELSE x : = 5
8 END

As we did with subroutines, we can now carefully consider all cases:

1. Supertypes: If we pass a reference of a supertype (such as INTEGER), then the read operation in line 4
may produce a result that is not in [1 TO 5]. Thus, We cannot allow a reference to a supertype as a
parameter.

2. Subtypes: If we pass a reference of a subtype (such as [2 TO 4]), then one of the updates in line 5 or line 6
may fail. Thus, We cannot allow a reference to a subtype as a parameter.

In other words, there is no interesting subtyping possible when passing mutable data.
This insight helps us understand subtyping of other mutable types. While some languages such as C and

Haskell allow passing read-only records (modi�able copies of such records in the case of C), other languages
such as Java or Ei�el only allow passing mutable objects. In these languages, we cannot safely vary the types of
the objects’ �elds, no matter whether the new type would be a subtype or a supertype.

For the same reason, we cannot safely pass mutable arrays whose element types vary. Despite this observa-
tion, the Java language allows arrays of subtypes to be passed in place of arrays of supertypes:

void f ( BigInt[] b i g A r r a y ) {
b i g A r r a y [ 0 ] = r e a d B i g I n t ( ) ;

}

SmallInt[] a r r a y ;
f ( a r r a y ) ; / / assume SmallInt <: BigInt

The price that Java pays for this feature is that it must perform dynamic checks on any update to arrays of
subtypes that are used in place of arrays of supertypes.

5.4 Subtyping and Inheritance
As we have seen, what subtyping a language can permit while remaining statically checkable and strongly typed
is not necessarily the same as what subtyping the language does permit; this is left to the language designer.
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To see another example of this, let us revisit our record subtyping example and translate it to Java, using Java’s
classes (which for this discussion we can think of as an enhanced version of records):

c l a s s TC1 {
int x ;

}

c l a s s TC2 {
int x ;
int y ;

}

void i n i t X ( TC1 v ) {
v . 1 = 2 3 ;

}

Here, Java will not allow us to supply a TC2 in a place that expects a TC1, such as in the call initX(new
TC2()); from the perspective of Java’s type system, TC2 6<: TC1. The reason for this di�erence is that Java does
not automatically consider two types to be subtypes simply because they are structurally suitable to be subtypes;
instead the language requires developers to explicitly declare that two types are subtypes of each other.

To declare their relationship, we can rewrite the above class de�nitions as follows:

c l a s s TC1 {
int x ;

}

c l a s s TC2 extends TC1 {
/ / A u t o m a t i c a l l y inherit f i e l d x
int y ;

}

Here, TC2 states that it extends the type TC1. The extends declaration is is one of the two mechanisms
through which user-de�ned Java types can declare themselves to be a subtype of another type12. A second e�ect
of the extends declaration is that TC2 automatically obtains all �elds declared for TC1; this mechanism (part
of the object-oriented principle of inheritance) conveniently ensures that we cannot forget to add any �elds that
TC2 would need to be a subtype of TC1.

5.5 Nominal and Structural Subtyping
As we saw, Modula-3 and Java have two di�erent mechanisms for subtyping of records (Modula-3) and classes
(Java). Speci�cally, Modula-3 uses structural subtyping of records:

De�nition 2 A type constructor in a language uses structural subtyping if two di�erent types T,U constructed from
this type constructor can be in a subtyping relation without being explicitly declared to be in a subtyping relation.

Meanwhile, Java uses nominal subtyping of classes:

De�nition 3 A language uses nominal subtyping for a type constructor if two di�erent types T, U constructed from
this type constructor can be in a subtyping relation, but only if they are explicitly declared to be in this relation.

The advantages and disadvantages of structural and nominal subtyping are analogous to those of structural
and nominal type equivalence.

12The other form of declaration is the implements declaration for Java interfaces, cf. Section 7.
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5.6 Formalising Subtyping
If we try to type-check a program that uses subtyping, we must now consider the language’s subtyping rules
when performing type-checking. For example, consider the following rule:

x : int y : int
x+ y : int

(add)

If we have a variable z: [0 TO 5], we still want to be able to type-check the addition z + 10 and give it a
meaningful type such as int, even if we now require a widening conversion on z.

This means that we need a formal rule that allows us to widen a value to have the type of a supertype. This
rule is the so-called subsumption rule, which languages with subtyping use as part of their type system:

v : T T <: U
v : U

(subsumption)

This allows us to check the type of z+10 as follows:

z : [0 TO 5] [0 TO 5] <: int
z : int

(subsumption)
10 : [10 TO 10] [10 TO 10] <: int

10 : int
(subsumption)

z + 10 : int
(add)

A direct consequence of the subsumption rule is that in languages with subtyping, most values have more
than one type.

6 Subtyping in Object-Oriented Programming
As Sebesta describes, the necessary components of object-oriented programming languages are

1. Dynamic method binding or dynamic dispatch

2. Inheritance, and

3. Support for Abstract Datatypes

Statically typed object-oriented programming languages complement these three features with subtyping
(Section 5.3).

The subtyping rules in major object-oriented languages follow the rules that we discussed above. The main
complication here comes about due to method overriding. Consider the following classes in Java-like notation
(though the concepts translate directly to Scala, C++ with virtual member functions, Ei�el etc.):

c l a s s A {
String name ( ) { return "A" ; }
String f ( ) { return " from " + th i s . name ( ) ; }

}

c l a s s B extends A {
@Override
String name ( ) { return "B " ; }

}

After these declarations, we have B <: A. We can thus pass any B instance into a context that expects a A
type:
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A v = new B ( ) ;

If we now call v.name(), then dynamic dispatch dictates that Java will return the String "B". Thus, the lan-
guage’s run-time system must be able to know that we want to call B.name(), rather than A.name().

The same is true for indirect calls: if we call v.f(), then we will still be calling the method A.f() (since B
has inherited this method from A without overriding it), but the call to this.name() within A.f() must now call
B.name() to produce the expected result (the String "from B").

This means that the object that we store in variable v must be able to remember what type it was created
with originally; otherwise dynamic dispatch cannot work. Thus, variable v has two type bindings: a static type
binding (which here is to A) and a dynamic type binding (which here is to B).

6.1 Subtyping and Methods
In our previous example, we overrode the method

name : ()→ String

from class A in class B with a method of the same type. The subtyping rules for methods follow the subtyping
rules for subroutines, so the following overriding between classes C and D is perfectly safe:

c l a s s C {
A g ( B b ) { . . . } / / type B -> A

}
c l a s s D extends C {

@Override
B g ( A a ) { . . . } / / type A -> B

}

since
A→ B <: B→ A

One complication here is the implicit self or this reference (or pointer, in C++). This self-reference allows
methods to access their own state, so its type is always �xed to be a subtype of the type of the declaring class.

This self-reference is technically a ‘hidden parameter’ to each method, but since a method can only be called
on an object whose dynamic type is a subtype of the class in which that method was de�ned, it is safe for us to
use this more precise type information.

6.2 Method Overriding
Many object-oriented languages permit both method overriding and method overloading (analogous to subrou-
tine overloading) at the same time. That is, they allow the de�nition of two methods of the same name but with
di�erent types in the same class. Consider:

c l a s s E {
in t f ( B b ) { . . . } \ Ccom { / / d e f i n e s method : i n t E . f ( B ) }
in t f ( A a ) { . . . } \ Ccom { / / d e f i n e s method : i n t E . f ( A ) }
in t g ( A a ) { . . . } \ Ccom { / / d e f i n e s method : i n t E . g ( A ) }

}
c l a s s F extends E {

@Override
in t g ( A a ) { . . . } \ Ccom { / / d e f i n e s method : i n t F . g ( A ) }

}
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The example above illustrates both overloading and overriding: E.f(B) and E.f(A) are two methods that have
the same name but di�erent parameter types, they are thus overloaded. Meanwhile, F.g(A) overrides the method
E.g(A).

The di�erence here is that we know statically which of the two possible f methods we will call, whereas we
cannot (in general) know until run-time which of the possible g calls we will make.

A aa = new A ( ) ; / / s t a t i c type : A , dynamic type : A
A ab = new B ( ) ; / / s t a t i c type : A , dynamic type : B
E ee = new E ( ) ; / / s t a t i c type : E , dynamic type : E
E e f = new F ( ) ; / / s t a t i c type : E , dynamic type : F

ee . f ( aa ) / / => E . f ( A )
ee . f ( ab ) / / => E . f ( A ) ( ! )
ee . g ( aa ) / / => E . g ( A )
e f . g ( aa ) / / => F . g ( A )

That is, when trying to resolve overloading, the language uses the static type binding; even though ab has
the dynamic type B, ee.f(ab) will invoke E.f(A).

When trying to resolve overriding, the language instead uses the dynamic type, performing dynamic dispatch.
Note that typeclasses (Section 3) as a technique for systematic overloading are also statically resolved, though

the implementation of typeclasses (at the compiler level, not visible to programmers) is similar to the implemen-
tation of dynamic dispatch.

6.3 Multiple Dispatch
The combination of (static) overloading and dynamic dispatch can be confusing to use in practice. Some languages
(the most mainstream of which are Common LISP and Julia) have thus adopted an enhanced form of dynamic
dispatch called ‘multiple dispatch’. The idea here is to allow an alternative to overloading in which the dynamic
types of actual parameters determine which method gets called.

In our previous example, a language with dynamic dispatch would execute the call ee.f(ab) by dispatching to
method E.f(B).

One challenge that languages with dynamic dispatch face is what to do in case of ambiguity. Consider the
following situation (here presented in Java syntax):

void f ( A a , B b ) { . . . }
void f ( B a , A b ) { . . . }

If we now try to call f(new B(), new B()), it is not clear which of the two calls to make. That means that at
run time, this code run into a situation in which there is more than one way to continue execution. The Julia
language handles this situation by aborting with an error.

While we can have an analogous issue with overloading, the compiler can detect ambiguities in overloading
(since overload resolution happens statically), so the compiler can ask the user to resolve the ambiguity (e.g., by
providing an explicit widening conversion to one of the parameters).

6.4 Classes and Types
In class-based object-oriented languages, each class gives us one type (or a type constructor, as we will see later).
However, there may be types that do not correspond to classes. One example of types without classes are Java’s
primitive type int; C++ similarly has a large number of primitive types (mostly inherited from C) that are not
class-based. User-de�ned enumeration types in C++ are another example; In Java, a user-de�ned enumeration
will also create a class that corresponds to that enumeration, though Java does not support inheritance over
enumerations.
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It is thus important to distinguish these two concepts. While a class always contains a type that describes
the class’ method types (and possibly other information, such as the types of visible �elds and constructors), the
class also contains the implementations of its various methods. When one class inherits from another class, it
obtains ‘copies’ of these �elds and methods from its parent class13.

The type, meanwhile, is only concerned with the operations that we can perform on class instances (method
calls, and possibly reads from/writes to �elds).

Both Java and Scala provide a mechanism for de�ning new types that describe families of operations that
are not classes. In Java, these types are called interfaces, and traits in Scala. Interfaces and traits may be sub-
types of other interfaces and traits, and classes may be subtypes of interfaces and traits, but since there are no
implementations to inherit from an interface or trait, these two do not act as classes.

6.5 Multiple Subtyping and Inheritance
So far, we have only considered cases where a class has exactly one superclass. However, it is not necessary for
a class to have a superclass at all. Recall that if A <: B, then we cannot also have B <: A unless A = B, so
with a �nite number of classes there must be some class ‘on top’ that has no superclass. In Java, that is the class
java.lang.Object, in Scala it is Any. Other languages may or may not have a single ‘root’ class; C++ for example
permits any number of top-level classes without superclasses.

Classes in Java and Scala can have at most one direct superclass. They can however have any number of
supertypes. Consider the following class B:

c l a s s A { . . . }
in te r face I { . . . }
in te r face J { . . . }
c l a s s B extends A implements I , J { }

This class has �ve supertypes: B (itself), A (its immediate parent class, which is also a type), the interfaces I
and J, and java.lang.Object, which is the direct parent class and parent type of A.

C++ instead permits multiple superclasses (and multiple inheritance).

7 Abstract Datatypes in Object-Oriented Languages
Subtyping gives us a second mechanism for implementing abstract datatypes. Consider the following Java type:

in te r face IntVector {
int l e n g t h ( ) ;
void append ( int v a l u e ) ;
int g e t ( int o f f s e t ) ;

}

Or the analogous declaration in Scala:

t r a i t IntVector {
def l e n g t h : Int
def append ( v : Int )
def g e t ( v : Int ) : Int

}

13The technical implementation is usually more e�cient than copying and instead shares the common information
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This declaration speci�es a variant of our abstract datatype IntVector from Figure 2 as a Java interface or Scala
trait. Any subclass of either of these types must now provide concrete implementations of the three methods
declared in IntVector, so any subclass of IntVector is an implementation of the abstract datatype whose interface
we have speci�ed here, and due to subtyping we can now write code that relies on IntVector (here in Scala):

def add12 ( v : IntVector ) : Int = {
v . append ( 1 2 )
return v . l e n g t h

}

Our add12 method can use the IntVector v without knowing which implementation we are providing. Unlike
with typeclasses, we do not even need to keep a type parameter for the IntVector; instead, the necessary type
information is hidden in the dynamic type of v.

7.1 Generics
We can combine subtyping with type parameters to make our vector able to handle any element type:

t r a i t Vector[T] {
def l e n g t h : Int
def append ( v : T )
def g e t ( v : Int ) : Int

}

Both Scala and Java refer to this availability of type parameters in the presence of subtyping as Generics, since
they permit the implementation of generic abstract datatypes (Section 4.3).

7.2 Bounded Parametric Polymorphism
Let us now de�ne the interface of a priority queue, as in Section 4.3. Recall that we want our priority queue to
be generic, but at the same time we only want to allow element types that allow us to compare objects against
each other so that we can keep the priority queue sorted and always �nd the ‘top’ element.

We can express this requirement in another Scala trait:

t r a i t Cmp {
def i s G r e a t e r T h a n ( v : Any ) : Boolean

}

This trait requires any subtype to provide an operation that allows comparing against any object. We can
now de�ne the Scala trait for our priority queue:

t r a i t Priority�eue[T <: Cmp] {
def push ( v : T )
def getTop ( ) : T

}

Here, the type constraint T <: Cmp ensures that T must be a subtype of Cmp.

7.3 F-Bounded Parametric Polymorphism
While our type bound in the previous example gives implementers enough information to build a priority queue,
it is also slightly too strong. Cmp requires all subclasses to write code that can compare their own state against
any other object. However, in a priority queue of integers, we only need to be able to compare integers with
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other integers. Thus, we can relax the requirements on our element types somewhat. We might instead of Cmp
use the generic type GT:

t r a i t GT[T] {
def i s G r e a t e r T h a n ( v : T ) : Boolean

}

This generic trait speci�es that its subtypes must provide a method for comparing against objects of some
type T. If we now set this type T to be the type of our elements, we can obtain a more precise bound on T:

t r a i t Priority�eue[T <: GT[T]] {
def push ( v : T )
def getTop ( ) : T

}

In other words, the type T must promise us to be able to compare values of T against other values of type
T. If we now want to implement a class of UserRequest objects that we want to be able to handle in a Priori-
ty�eue[MyRecord], we can de�ne it as follows:

c l a s s UserRequest extends GT[UserRequest] {
. . .
def i s G r e a t e r T h a n ( v : UserRequest ) = . . .

}

This facility of bounding a type parameter by a type that contains the type parameter itself is called F-bounded
polymorphism in the literature. It is supported e.g. by Java, Scala, and C#.

7.4 Variance on Type Parameters
As we have seen, generics are a valuable type system feature for the speci�cation of abstract datatypes. However,
the interaction of type variables and subtyping is not always trivial. Consider the following abstract datatype:

t r a i t Box[T] {
def put ( v : T )
def g e t ( ) : T

}

This ADT simply allows us to store a value and retrieve it again. If we now use it in our code, we may run
into situations where we may need to deal with subtypes and subtypes of element types. This raises the question:
When is Box[A] <: Box[B]?

To help us understand this, we will write a small helper function that uses the Box[T]:

def r ebox ( box : Box[B] , b : B ) {
val v : B = box . g e t ( )
box . put ( b )

}

Let us now consider the possibilities for passing a Box[A] to rebox:

• A :> B: For example, consider A = INTEGER and B = [1 TO 10]. In this case, box.put(b) is safe, as
Box[A] can store any number. However, box.get() might now return the number 99, which does not �t into
the variable b. Thus, this option is not statically type-safe.
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• A <: B: For example, consider A = [1 TO 10]. and B = INTEGER In this case, box.get() works, but
box.put(b) does not: b might be 99, which we cannot pass to an operation that only accepts A as parameter.
Thus, this option is not statically type-safe either.

In other words, we cannot vary the type parameter T of Box[T]; we thus say that Box[T] is invariant in T.
As we saw, the operations that prevented us from varying T to supertypes and subtypes were di�erent for our

two cases. If we were to drop one of these operations, we might actually be more �exible. Let us thus consider
the following types:

t r a i t ReadBox[T] {
def g e t ( ) : T

}

t r a i t WriteBox[T] {
def put ( v : T )

}

As we can see, we can safely replace a ReadBox with a ReadBox of a subtype; e.g.,

ReadBox[[1 TO 10]] <: ReadBox[INTEGER]

since the only operation we have on a ReadBox is to read out an element. That means that when we vary the
type parameter T towards a subtype, the type of ReadBox[T] also varies towards that of a subtype; we say that
ReadBox[T] is covariant in T.

Conversely, we can replace WriteBoxes by WriteBoxes of supertypes; e.g.:

WriteBox[INTEGER] <: WriteBox[[1 TO 10]]

since the only operation we have on a ReadBox is to write something. That means that when we vary the
type parameter T towards a subtype, the type of WriteBox[T] varies in the opposite direction, towards that of a
supertype; we say that WriteBox[T] is contravariant in T.

Many type constructors take type parameters, and for each of these type parameters we can wonder whether
these are invariant, covariant or contravariant. A fourth option is for the type parameters to be bivariant, which
means that they can be varied both to subtypes and supertypes; in practice, this means that they aren’t used at
all in the body of the type’s de�nition. For example, recall our function types: We can think of the function type
arrow (→) as a type constructor→ [P,R] with two type parameters, parameter type P and return type R. As
we have seen in the Arrow Rule (Section 5.2), the function type constructor is contravariant in P and covariant
in R.

More formally:

De�nition 4 Let τ be a type constructor with formal type parameters τ1, . . . , τk , such that T = τ [τ1, . . . , τk] is a
type.

Let i ∈ {1, . . . , k}.
If for all τ ′i <: τi we can always substitute a value of type τ [τ1, . . . , τ ′i , . . . , τk] in a context that expects a value

of type τ [τ1, . . . , τi, . . . , τk] without violating type preservation then τi is covariant in T .
If for all τ ′i :> τi we can always substitute a value of type τ [τ1, . . . , τ ′i , . . . , τk] in a context that expects a value

of type τ [τ1, . . . , τi, . . . , τk] without violating type preservation then τi is contravariant in T .
If τi is neither covariant nor contravariant in T , then τi is invariant in T .

7.5 De�nition-Site and Use-Site Variance
Variance is a very explicit concept in Scala, Java, and C#. In Scala and C#, type parameters are always invariant
unless they are declared to be covariant or contravariant. Scala and C# use the pre�x operators + and - to declare
co- and contravariance, respectively:
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t r a i t ReadBox[+T] { / / c o v a r i a n t
def g e t ( ) : T

}

t r a i t WriteBox[-T] { / / c o n t r a v a r i a n t
def put ( v : T )

}

t r a i t Box[T] { / / i n v a r i a n t
def g e t ( ) : T
def put ( v : T )

}

This declaration-site variance means that we decide about the type variable variance when we de�ne our
abstract datatypes and classes.

Java takes an alternative approach: here, we specify whether we want a type to be covariant or contravariant
when we use it. Assuming that B <: A :, we can write:

c l a s s Box<T> {
public T g e t ( ) { . . . } ;
public void put ( T v ) { . . . } ;
public String t o S t r i n g ( ) { . . . } ;

}

Box<? extends A> c o v a r i a n t B o x = new Box<B> ( ) ;
Box<? super B> c o n t r a v a r i a n t B o x = new Box<A> ( ) ;
Box<?> b i v a r i a n t B o x = new Box<AnyWeirdType> ( ) ;
Box<A> i n v a r i a n t B o x = new Box<A> ( ) ;

The literature calls this approach use-site variance.
Java will now prevent us from calling any method in covariantBox that has the type parameter in a con-

travariant position, so we cannot call covariantBox.put(). Analogously, for contravariantBox, we cannot call the
get() operation. The bivariantBox prohibits calls to either put or get, but it won’t stop us from calling toString().
Finally, the invariantBox permits all calls, at the cost of requiring an exact match of the type parameter T.

Use-site variance requires us to write more complex types, but allows us to re-use the same type de�nition
(and the same implementations) for covariant, contravariant, bivariant, and invariant uses.
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