
Handout D: Value Equality

Christoph Reichenbach

November 15, 2019

Comparing two values for equality is an essential operation in many programming languages. However,
it is not always obvious what it means for two values to be equal. Most languages agree that 0 = 0 and
0 6= 1. But what about 1

2 = 2
4? Here we must distinguish between the intended meaning of a value and

its representation.
In the following, we will look at some of the most common forms of equality.

1 Primitive (Structural) Equality

When we compare two integer values, such as 0 and 1, we can directly compare the (short) bit patterns
that represent these values in memory. This is e�cient, precise, and unambiguous � but unfortunately
this technique only works for �xed-size integers, booleans, enumerations, and characters.

2 Floating-Point Equality

Floating point numbers, like integers, are represented as compact bit patterns in memory. In principle we
can compare them directly for equality, and many languages permit that. However, arithmetic operations
on �oating-point numbers are inherently imprecise. Consider the following Python example:

>>> 1.1 + 0.1 == 1.2

False

>>> 1.1 + 0.1

1.2000000000000002

Here, the addition of 1.1 to 0.1 produced a result that is slightly di�erent from one that we expect
arithmetically. This is because of the trade-o� that �oating point numbers make: they sacri�ce precision
(and hence robustness) for execution speed.

As a consequence, the programming language Standard ML forbids equality comparisons between
�oating point numbers. Programmers must instead use less-than and greater-than comparisons, forcing
them to think about suitable epsilon environments in which their conditions might hold.

3 Reference Equality

Let us consider an example from the programming language Java:

S t r i n g s = " h e l l o " ;
return s == " h e l l o " ;

This computation may return false. This is due to how Java (and other programming languages)
represent strings: since Java strings may be (almost) arbitrarily long and thus take up arbitrary amounts
of memory, Java cannot store them as e�ciently as a 32-bit number and must instead place the strings
somewhere in memory. Once the strings are in memory, Java represents them with the memory address
that contains the beginning of string.

1

When Java's equality comparison operator ==, compares strings, it only compares the strings' ad-
dresses.

However, it is perfectly possible to represent the same string at di�erent memory addresses, and this
happens frequently in Java code. Thus, comparing strings for equality with the == operator is a common
bug pattern in Java programs.

4 Programmer-de�ned Equality

To compare the contents of two strings, Java programmers must instead use

return s . e qu a l s (" foo ") ;

This mechanism hooks into techniques that we will discuss later; its essence is that it relies on
programmer-de�nable notions of equality. In Java, the default mode of comparing strings compares them
for equality character-by-character. Alternative forms of equality could be to compare strings irrespective
of capitalisation, such that "foo" and "FOO" are equal.

5 Structural Equality

Some languages also support a form of equality checking that works analogously to primitive equality,
but generalises its idea and scales to objects of arbitrary size. For example, in the language Go, we can
de�ne and compare records like the record person in the program below:

type pe r son s t ruc t {
name s t r i ng

age i n t

}

func main () {
a := pe r son {"A" , 20} ;
b := pe r son {"A" , 20} ;
fmt . P r i n t l n (a == b) ;

}

This program will print out true, since Go here performs structural equality checking. If we instead write

a := pe r son {"A" , 21} ;

or

a := pe r son {"B" , 20} ;

the program will print out false, since it considers records to be equal if and only if all �elds are equal.

6 Outlook

Most languages use a combination of these equality methods. For example, Python provides two equality
checking operators:

• `is' performs primitive equality checks on built-in types, such as integers, and reference equality
checks on other types, while

• `==' is a user-de�nable equality checking mechanism that defaults to reference equality checking,
but for most of Python's built-in types (lists, tuples, etc.) does structural equality checking.

2

7 Summary

We have discussed the following forms of equality:

• Primitive Equality, which directly compares two values by comparing their bit patterns in mem-
ory,

• Structural Equality, which performs the same kind of comparison, but recursively within poten-
tially more complex structures,

• Reference Equality, which checks whether two pointers/references point to the same address in
memory,

• User-De�ned Equality, which can perform arbitrary equality checking but isn't provided by the
language itself.

3

