
Handout B: Type Systems

Christoph Reichenbach

November 21, 2019

Type systems are a central part of modern programming languages: they describe constraints over
the possible values that an expression may evaluate to, and sometimes even more advanced properties,
such as whether the evaluation may abort with exceptional behaviour, again expressed as constraints.
These constraints allow programming language implementers to prevent costly bugs, or at least to make
these bugs easier to catch and understand. Thus, type systems can contribute greatly to the Robustness,
but also the Readability of programming languages. In addition to these improvements in error reporting,
certain type systems can allow language implementers to decrease the runtime cost (and sometimes the
compile-time cost) of the language.

However, there is a considerable degree of variation between the way in which di�erent languages
handle types, even among languages that we today consider modern, like Scala, Python, or Rust. Some-
thing that may be entirely legal in one programming language may violate the rules of the type system
in another language.

For example, the C type system allows the following assignment, whereas the exact same assignment
is illegal in Java1:

i n t x = ( i n t ) " He l l o ,  World" ;

More insidiously, the following code is valid both in Scala and JavaScript:

var r e s u l t = " foo " ∗ 2 ;

However, in Scala the code produces a character string ("foofoo"), whereas in JavaScript it produces a
number.

In the following, we will look into what types and type systems are, and into the main concepts
underlying them.

1 Types

Very abstractly speaking, type systems are systems that relate the three concepts of types, expressions,
and values to each other and describe rules for ensuring some form of correctness. Here, expressions e
and values v are constructions that we have already encountered when discussing operational semantics:

e ⇓ v

That is, expressions are language constructs that we can evaluate, and values are the results of these
evaluations. Our earlier discussion has not delved into types, however.

De�nition 1 A type is a subset of the set of values.

If τ is a type and v is a value, then we write

v : τ

(`v has the type τ ') to say that v ∈ τ .
1Example due to Amer Diwan

1



For example, the int type of Python and the BigInt type of Java represent the set of integers (also
written as Z), i.e., any whole positive or negative number, so we can formally write:

v : int ⇐⇒ v ∈ Z

or, equivalently, int = Z.
Another example are subrange types, as found in Ada, Pascal, Modula-2, and the Mystery language:

VAR x : [ 0 TO 1 0 ] ;
x := 0 ;

A subrange type (written [b` TO bu] in Mystery) is the type of all integers between the lower bound b`
and the upper bound bu, including the bounds themselves. In the above example, variable x can assume
the number 0, or any integer up to and including 10. However, the following code attempts to violate
the constraints that the subrange type [0 TO 10] imposes over x:

VAR x : [ 0 TO 1 0 ] ;
x := 11 ;

This code contains a type error : 11 /∈ [0 TO 10].

De�nition 2 A type error is an attempt to perform an operation that requires an input value of type τ
with a value v even though v : τ does not hold.

Attempting to take a variable bound to type τ and binding it to such a value v even though v : τ
does not hold is an example of such an operation.

Of course, de�ning our types and knowing what type errors are only helps us if we also check for
them:

De�nition 3 Type checking is the process of detecting type errors.

2 Strong and Weak Typing

Not all programming languages have a notion of type errors or type checking. Modern (and most of the
not-so-modern) CPUs only know about sequences of bytes, and their assembly languages re�ect this view
of the world.

Recall from the textbook that integers and �oating point numbers have entirely di�erent in-memory
representations; the bit string that represents the 32-bit integer number 1 is completely unlike the bit
string that represents the 32-bit IEEE 754 �oating point number 1.0. However, if we instruct the CPU
to load the �oating point number 1.0 and then perform an integer addition on that same number, the
CPU will cheerfully obey � producing meaningless garbage in the process.

Even languages with type systems, such as C and C++, do not reliably prevent such mis-uses of the
bit strings that we store in memory. On the other hand, languages like Scala and Ocaml do:

De�nition 4 Strong type checking is a property of a programming language that states that any language
implementation �nds all type errors and prevents the operations that caused the type error from taking
place.

De�nition 5 Weak type checking is the absence of strong type checking.

We say that a language with weak type checking is a weakly-typed language, and a language with
strong type checking is a strongly-typed language. Examples of weakly-typed languages are C, C++, and
JavaScript, while strongly-typed languages include Haskell, Python, Ruby, and Java.

2



Strong type checking improves the reliability of a language, at a cost to the language's expressivity,
and sometimes also at a cost to the language's execution time.

For most programs the gain of increased reliability is greater than the loss in expressivity, but there are
exceptions: in operating system kernel development (e.g., when working on device drivers) or language
runtime environment development, developers may have to write directly to memory without regard to
the type system. Some languages therefore provide backdoors that allow bypassing the type checker,
like Go's unsafe package, Rust's unsafe blocks, Modula-3's LOOPHOLE operator, or `native calls' to C or
Assembly supported by most major languages.

If these backdoors are not necessary for normal use of the language, we still consider the language to
be strongly typed, even though strictly speaking only the language minus the backdoor is strongly typed.

3 When to Type-Check

Python and Ruby are strongly typed, but they check types after the program has started, i.e., at runtime.
That means that for these languages, type-checking is part of the dynamic semantics.

Other languages (Rust, Java, Scala) check types at compile time, i.e., before the program is run. In
these languages, type checking is part of the static semantics.

De�nition 6 Any type checking that is performed at runtime is called dynamic type checking.

De�nition 7 Any type checking that is performed before runtime (at compile time, as part of the static
semantics) is called static type checking.

Consider the following program, which is syntactically valid in both Scala and JavaScript:

var x = 0 ;
p r i n t ( "Hel lo ,  World ! " ) ;
p r i n t ( x [ 7 ] ) ; // Type Error

In Scala, this will not compile, due to the type error, so we cannot even execute the part of the code
that is correctly typed. This demonstrates Scala's static type checking.

Note that in JavaScript, the exact same program will print2 �Hello, World!� and then �unde�ned�,
which signals a type error that was suppressed by the JavaScript runtime. This demonstrates that
JavaScript is weakly typed; a strongly typed language would have prevented us from printing the result
of the invalid x[7].

The corresponding Python program looke like this:

x = 0
print ( "Hel lo ,  World ! " )
print ( x [ 7 ] ) # Type Error

This program will print �Hello, World!�, and then halt with a type error, demonstrating Python's dynamic
type checking.

We often call languages that only perform dynamic type checking dynamically typed language. Con-
versely, statically typed languages are languages that perform some type checking statically.

This asymmetry in the de�nition comes about because it is di�cult to do all type checking at com-
pilation time. Consider the following rule from the Java language speci�cation JLS-11, Section 10.4:

All array accesses are checked at run time; an attempt to use an index that is less than zero
or greater than or equal to the length of the array causes an ArrayIndexOutOfBoundsException
to be thrown (�15.10.4).

Making sure that an array access stays within bounds is indeed a type check, as we can see more
clearly in Mystery:

2Assuming that the function print() is bound to console.log().

3



VAR a : ARRAY [ 0 TO 10 ] OF INTEGER;
VAR x : [ 0 TO 1 0 ] ;
VAR y : INTEGER
BEGIN

. . .
a [ x ] := 1 ;
a [ y ] := 1 ;
. . .

END

Here, the array access a[x] is free of any type errors, since the type of x guarantees that x is always in
the index range of the array a. However, the array access a[y] is not type safe: y may contain any integer,
including the number −1, which is not of type [0 TO 10] and thus outside of the array's index range.

In other languages, subrange types are not an explicit part of the type system, but they still exist
implicitly, as in the above-mentioned rule from the Java language speci�cation. Array out-of-bounds
checks, as well as null-pointer exceptions, are well-known examples of type checks that statically typed
languages have to defer to runtime, in order to be strongly typed3.

C and C++, meanwhile, are statically typed but do not perform such out-of-bounds checks, which is
one reason for why these languages are not strongly typed.

4 Type Checking

To express the type system of a language, we can use the same tools as for describing their natural
semantics. Consider the language AddEqIf, whose syntax we have in Figure 1, and whose semantics we
see in Figure 2. This is again a language that consists purely of expressions, but this time we have two
types of values, the natural numbers (the elements of nat) and the booleans (true and false).

This language has three operators: Addition (+), which is only de�ned if both parameters are in
nat, equality (=), which allows us to compare two natural numbers or two booleans, and the conditional
expression if ec then et else ef , which checks if ec evaluates to true (and in that case gives us the result
of evaluating et) or if c ⇓ false (in which case it gives us the result of evaluating ef ).

To formalise these constraints, we introduce two separate types into the language: Bool, the type of
booleans, and Nat, the type of natural numbers. Thus, we can say e.g.

true : Bool

and
14 : Nat

We can now use these typing judgements to formalise the typing constraints that we sketched infor-
mally earlier. First, we want to say that e1+e2 is allowed in our language if e1 : Nat and e2 : Nat. Let's
call this rule `rule A'. If we also know that 14 : Nat (let's call this `rule B'), then we can now say that 14
+ 14 is allowed according to rules A and B. However, rules A and B together are not enough to let us
see that (14 + 14) + 14 is allowed! The reason for this is that the rules don't tell us what the type of
14 + 14 is, only that it is `allowed'.

Programming language designers have come up with an elegant solution that allows us to simultane-
ously say `this expression has that type' and `the type system allows this expression': the type system
allows an expression if and only if it can assign a type to the expression.

De�nition 8 An expression e is well-typed if and only if we can show e : τ for some type τ .

Let us apply this idea to our + operator. If both arguments to + have the type Nat, then the entire
expression has the type Nat.

3Particularly clever compilers may be able to eliminate some of these checks, but the problem of eliminating them entirely

is undecidable.

4



〈expr〉 −→ nat
| true | false
| 〈expr〉 + 〈expr〉
| 〈expr〉 = 〈expr〉
| if 〈expr〉 then 〈expr〉 else 〈expr〉

Figure 1: Syntax for the language AddEqIf.

e, ei ∈ 〈expr〉
v, vi ∈ {true, false} ∪ nat

v ∈ nat
v ⇓ v (nat)

true ⇓ true
(true)

false ⇓ false
(false)

e1 ⇓ v1 e2 ⇓ v2 v = v1 + v2
e1 + e2 ⇓ v

(add)
e1 ⇓ v e2 ⇓ v
e1 = e2 ⇓ true

(eq-true)
e1 ⇓ v1 e2 ⇓ v2 v1 6= v2

e1 = e2 ⇓ false
(eq-false)

e1 ⇓ true e2 ⇓ v2
if e1 then e2 else e3 ⇓ v2

(if-true)
e1 ⇓ false e3 ⇓ v3

if e1 then e2 else e3 ⇓ v3
(if-false)

Figure 2: Natural Semantics for the language AddEqIf. Here, nat is the set of natural numbers, N, as
part of the input language

We can use inference rule notation, as for operational semantics, to compactly write down this rule:

e1 : Nat e2 : Nat

e1 + e2 : Nat
(t-add)

As with operational semantics, we can use this rule recursively, to allow us to see not only that the
type system allows (14 + 14) + 14, but also that the type of (14 + 14) + 14 is Nat:

14 : Nat
rule B

14 : Nat
rule B

14 + 14 : Nat
(t-add)

14 : Nat
rule B

(14 + 14) + 14 : Nat
(t-add)

If we now generalise over `rule B' to allow any elements of nat to have the type Nat, we can allow all
natural numbers and all additions involving natural numbers to be well-typed (and, hence, for our type
system to allow them):

v ∈ nat
v : Nat

(t-nat)

Now that we have formalised the type system as far as we need it for + operator. This will allow the
type system to catch the error in the expression true + 2: even if we give the booleans their respective,
as in

true : Bool false : Bool

we will not be able to use our typing rules to type true + 2, since true : Bool, while the + operator
requires Natparameters.

Let us move on to formalise the = operator, which should test for equality:

e1 : Nat e2 : Nat

e1 = e2 : Bool
(t-eq-nat)

This time, the resultant type is Bool, the type of booleans, so 1 = 2 : Bool.

5



true : Bool false : Bool
v ∈ nat
v : Nat

(t-nat)
e1 : Nat e2 : Nat

e1 + e2 : Nat
(t-add)

e1 : Nat e2 : Nat

e1 = e2 : Bool
(t-eq-nat)

e1 : Bool e2 : Bool

e1 = e2 : Bool
(t-eq-bool)

e1 : Bool e2 : α e3 : α
if e1 then e2 else e3 : α

(t-if)

Figure 3: Type system for the language AddEqIf. This type system can be checked completely statically.

This type system will refuse to assign a type to 1 = true; an implementation of our language would
print a type error for such an expression. This is working as intended: we can't accidentally compare
booleans with natural numbers.

However, the type system also stops us from comparing booleans with each other, so it will refuse to
type the expressions false = false or false = (1 = 2). There is no reason for us to be so restrictive
� our operational semantics rules eq-true and eq-false can handle the booleans perfectly well. We can
address this either by making the rule t-eq-nat more general, or by introducing another rule:

e1 : Bool e2 : Bool

e1 = e2 : Bool
(t-eq-bool)

Finally, let us examine the expression if ec then et else ef . Here, ec must have type Bool � if
ec is a number, then our operational semantics rules would get stuck here (since neither of them applies).

It is less clear what the types on et and ef should be, and what type we want for the if... expression
itself. If et : Nat and ef : Nat, then the conditional will always compute a Nat, so it makes sense to set
if c then et else ef : Nat. On the other hand, if et : Bool and ef : Bool, then we would want to set
the type if c then et else ef : Bool.

But what should we do if the types of et and ef disagree? Our operational semantics can give us a
meaningful result for the program

4 + (if true then 5 else false)

so it would be nice to be able to have a rule such as the following:

ec ⇓ true et : Nat

if ec then et else ef : Nat
(t-if-true-dynamic)

Now, mathematics is versatile and patient, and nothing prevents us from writing down such a rule.
However, the type judgement in this rule depends on the result of evaluating the program (c ⇓ true).
This means that we can only do this kind of type checking dynamically. Moreover, since we need the
result of this rule to typecheck e.g. the expression 4 + (if true then 5 else false), using such a
rule means that we would potentially have to defer all or almost all type checking to runtime.

While this is a possibility, we here instead opt for a type system that we can check statically. Thus,
we require that the types of et and ef agree � either both are Bool or both are Nat.

As with our earlier rule for the = operator, we could accomplish this form of variability by having two
rules, one for Bool and one for Nat.

Figure 3 summarises our type system, and rule t-if describes the typing rule for if... expressions.
Here we require e2 : α and et : α, where α is a type variable. That means that our rule doesn't know
which type e1 and e2 have, just that both of them have the same type, and that that type is also the
type that we assign to the entire if... expression.

As we can see, types are an abstraction over the possible values that our expressions may assume,
and the same holds when we move on to variables, statements, and more general language constructs.
Thus, we can think of types as a framework for modelling the possible behaviour of our program. Types
allow us to con�ne this behaviour, and the expressive power of the type system governs how precise and
how accurate these models can be.

6



4.1 Properties of Type Systems

We can construct any arbitrary type system that we �nd interesting, but not all of them will be useful to
end users. Language designers have found a number of valuable properties that they want type systems
to have.

The �rst of these properties is that the type system should allow us to predict the outcome of compu-
tations.

In most practical programming languages, the set of values is at least partly a subset of the set of
expressions. For instance in our language AddEqIf, the booleans and natural numbers are part of the
input language (the left-hand side of the evaluation arrow), but they also form the output language (the
right-hand side of the arrow). This means that if we evaluate an expression

e ⇓ v

we can assign a type both to e and to the result v, simply by using the same typing rules for the
(right-hand side) values. Intuitively, when the type system promises us that an expression will give us an
integer value, we want the evaluation relation to also deliver that integer value, in other words, evaluation
and the type system should agree. We call this property type preservation:

De�nition 9 A type system has the type preservation (or subject reduction) property if for any e ⇓ v,
e : τ implies v : τ .

Type preservation is one of the three properties that we want a type system to have:

1. Type preservation: The predictions of the type system agree with the evaluation rules.

2. Progress: The type system only assigns a type if the evaluation rules will not get `stuck' due to a
missing evaluation rule.

This is not the same as guaranteeing that the program itself terminates � a well-typed Java program
may certainly enter an endless loop � but it does guarantee that the language implementation will
never run into a situation in which it doesn't know what to do next. For a more precise formalisation
of this property, we would need a di�erent form of semantics (structural operational semantics) that
we are not covering in this course.

3. Termination: We want the type system to be decidable, that is, we want an automatic mechanism
that performs type checking.

Not all language designers agree that termination is necessary (though it is certainly desirable). For
instance, the programming language Agda is statically typed but has an undecidable type system: the
programmer needs to help the language implementation to see whether the program is correctly typed.

4.2 Dynamic Type Checking

Whenever a typing rule depends on the evaluation relation ⇓, we must defer type checking to runtime. In
some cases, only a small amount of type checks must be done at runtime; for example, in a language like
Modula-3, we can do most of the type-checking statically, while we can implement the remaining checks
(array out-of-bounds checking and null pointer checking) fairly e�ciently:

• For array out-of-bounds checking, all we need to do is to compare array indices against array bounds
before every access. Since array indices are always integers, all we need to do is to ask the CPU to
compare these integers against the maximum and minimum index that is allowed for the array.

These checks still take execution time, which is why some languages (C, C++) choose not to do
them, sacri�cing robustness for decreased execution cost.

7



• For null-pointer accesses the check is even simpler: if a piece of code tries to read from or write
to a null pointer, the CPU automatically interrupts the program and calls the operating system.
Without going into detail, this means that null pointer checking comes for free as long as there
are no null pointer errors, but when we do run into a null pointer dereferences, the runtime cost is
relatively high.

However, languages like Python or JavaScript that are dynamically typed defer all type checking to
runtime. That means that for any value we compute, the language has to be able to tell at run time
what the type of the value is. Thus, these languages take up extra storage to be able to identify values.

Tagging For example, consider a language that has 32-bit integer and �oating point values and needs
to be able to distinguish them at runtime. One approach is to reserve a single bit and mark it as 1 if the
value is an integer, and as 0 if the value is a �oating point number. This e�ectively reduces the range of
integers to 31 bits and slightly reduces the precision of �oating point numbers. It also requires additional
checks before and after operations on the numbers.

This approach is called tagging. Traditional implementations of LISP as well as Standard ML of New
Jersey choose this implementation scheme (even though the latter is fully statically typed, it uses these
tags to simplify parts of its runtime system).

An alternative approach is to store values as pairs 〈type, value〉. This approach scales up to a larger
number of types and avoids sacri�cing precision or integer range, but takes up more memory.

5 Overloading

Many languages allow programmers to re-use operators for di�erent purposes. For example, in C we can
use the + operator for adding not only di�erent kinds if integers, but also �oating point numbers. In
Python and Java, we can use the same operator to concatenate strings:

i = 1 + 2
f = 1 .0 + 2 .5
s = " foo " + "bar"

Each of these three uses of the + operator is a fundamentally di�erent operation. We thus say that the
operator + is overloaded :

De�nition 10 An operator is overloaded if it performs di�erent actions depending on the types of its
arguments.

Overloading is also known as ad-hoc polymorphism; we will discuss it more when we examine the
behaviour of subprograms.

From the perspective of operational semantics, overloading is interesting because it corresponds to
the occurrence of typing judgements in operational semantics rules. To see this, let us extend AddEqIf
with strings:

"string" : String

Here, String is the type of strings.
We now want to overload the + operator. First, we ensure that numeric addition only applies if the

parameters evaluate to natural numbers:

e1 ⇓ v1 e2 ⇓ v2 v1 : Nat v2 : Nat v = v1 + v2
e1 + e2 ⇓ v

(add)

Now we add a rule that concatenates strings:

8



e1 ⇓ v1 e2 ⇓ v2 v1 : String v2 : String v = v1 ++ v2
e1 + e2 ⇓ v

(concat)

Here,++ is the mathematical string concatenation operator � we leave its precise de�nition (which
depends on the de�nition of strings) as an exercise to the reader.

We see how both rules depend on the typing judgement (:), unlike the rules from Figure 2. This
dependence is the source of the operator's overloading.

5.1 User-de�ned Operator Overloading

In some languages, such as C++, users can overload existing operators for their own types (or even
for existing types). In others, like Python and Smalltalk, such operators are just `syntactic sugar' and
get translated to a subroutine call; in essence, this also allows user-de�ned operator overloading by
piggybacking on a di�erent language mechanism.

In Haskell and Rust, there exists a systematic overloading mechanism called Type Classes, which we
will look into later in this course.

9


