
P.1

Mystery grammar (for reference):

〈Program〉 ::= 〈Block〉
| 〈Block〉 ‘;’

〈Decls〉 ::= 〈DeclList〉 | ε
〈DeclList〉 ::= 〈Decl〉

| 〈Decl〉 ‘;’ 〈DeclList〉
〈Decl〉 ::= ‘VAR’ id 〈OptType〉

| ‘TYPE’ id ‘=’ 〈Type〉
| 〈ProcDecl〉

〈OptType〉 ::= ε | ‘:’ 〈Type〉
〈ProcDecl〉 ::= ‘PROCEDURE’ id ‘(’ 〈Formals〉 ‘)’ 〈OptType〉 ‘=’ 〈Block〉

| ‘PROCEDURE’ id ‘(’ 〈Formals〉 ‘)’ ‘=’ 〈Block〉
〈Formals〉 ::= 〈FormalList〉 | ε
〈FormalList〉 ::= 〈Formal〉

| 〈FormalList〉 ‘,’ 〈Formal〉
〈Formal〉 ::= id ‘:’ 〈Type〉
〈Type〉 ::= ‘INTEGER’

| ‘UNIT’
| 〈SubrTy〉
| 〈ArrayTy〉
| id
| 〈ProcTy〉

〈SubrTy〉 ::= ‘[’ number ‘TO’ number ‘]’
〈ArrayTy〉 ::= ‘ARRAY’ 〈SubrTy〉 ‘OF’ 〈Type〉
〈ProcTy〉 ::= ‘PROCEDURE’ ‘(’ 〈Formals〉 ‘)’ 〈OptType〉
〈Block〉 ::= 〈Decls〉 ‘BEGIN’ 〈Stmts〉 ‘END’
〈Stmts〉 ::= 〈StmtList〉 | ε
〈StmtList〉 ::= 〈Stmt〉

| 〈StmtList〉 ‘;’ 〈Stmt〉
〈Stmt〉 ::= 〈Assignment〉

| 〈Return〉
| 〈Block〉
| 〈Conditional〉
| 〈Iteration〉
| 〈Output〉
| 〈Expr〉

〈Assignment〉 ::= 〈Expr〉 ‘:=’ 〈Expr〉
〈Return〉 ::= ‘RETURN’ 〈Expr〉
〈Conditional〉 ::= ‘IF’ 〈Expr〉 ‘THEN’ 〈StmtList〉 ‘ELSE’ 〈StmtList〉 ‘END’
〈Iteration〉 ::= ‘WHILE’ 〈Expr〉‘DO’ 〈StmtList〉 ‘END’
〈Output〉 ::= ‘PRINT’ 〈Expr〉
〈Expr〉 ::= 〈Operand〉

| 〈Expr〉 〈Operator〉 〈Operand〉
〈Operand〉 ::= number

| id
| 〈Operand〉 ‘[’ 〈Expr〉 ‘]’
| 〈Operand〉 ‘(’ 〈Actuals〉 ‘)’
| ‘(’ 〈Expr〉 ‘)’

〈Operator〉 ::= ‘+’ | ‘>’ | ‘==’ | ‘AND’
〈Actuals〉 ::= 〈ActualList〉 | ε
〈ActualList〉 ::= 〈Expr〉

| 〈Actuals〉 ‘,’ 〈Expr〉

Personal Identi�er:

P.2

Question 1 (7 Points)

In the table below you see pairs of types with a box in between. Write an X in the box

if neither type is a subtype of the other, or draw a <: or :> (suitably) to indicate that one is a

subtype of the other.

Use the same assumptions as in class, i.e., that (1) we are using an imperative language (updates

are allowed), that (2) the type system enforces strong typing and (3) the type system permits

any type to be a subtype of another if and only if doing so will not require dynamic checks.

(a) (3 Points) Fill in as indicated above:

[5 TO 10] [0 TO 10]

[5 TO 10] [3 TO 7]

[5 TO 10] [5 TO 7]

ARRAY [0 TO 10] OF [5 TO 10] ARRAY [0 TO 10] OF [0 TO 10]

ARRAY [0 TO 10] OF [0 TO 10] ARRAY [5 TO 10] OF [0 TO 10]

(b) (4 Points) Continue �lling in. For the following, assume that A is a supertype of B, and that

the type C[X] is covariant in type parameter X.

A B

C[A] C[B]

A→ A A→ B

A→ A B→ A

A→ A B→ B

A→ B B→ A

Personal Identi�er:

P.3

Question 2 (9 Points)

Consider the following Mystery program. Assume that Mystery is con�gured so that the pro-

gram can execute without any errors.

1 VAR z : INTEGER;
2 PROCEDURE P(y : INTEGER) : INTEGER =
3 BEGIN
4 y := y + 1;
5 PRINT z;
6 RETURN y + 2
7 END;
8 PROCEDURE Q(x : INTEGER) : INTEGER =
9 BEGIN

10 PRINT x;
11 PRINT x
12 END
13 BEGIN
14 z := 0;
15 Q(P(z))
16 END

(a) (3 Points) What will the program print under by-value-result parameter passing? Explain.

(b) (3 Points) What will the program print under by-reference parameter passing? Explain.

(c) (3 Points) What will the program print under by-name parameter passing? Explain.

Personal Identi�er:

P.4

Question 3 (12 Points)

Answer the following four questions about programming language concepts.

(a) (3 Points) What is short-circuit evaluation? Explain with an example.

(b) (3 Points) What is a widening conversion? Explain with an example.

Personal Identi�er:

P.5

(c) (3 Points) What is a the di�erence between discriminated (tagged) union types and free (un-
tagged) union types? Explain with an example.

(d) (3 Points) What is a the di�erence between type inference and dynamic typing? Explain

with an example.

Personal Identi�er:

P.6

Question 4 (8 Points)

Consider one of the following class interfaces (the two are equivalent; one is in Java, and one in

Scala). The constructor de�nitions are omitted for brevity, as they play no role in this discussion.

// Java
class C<X> {
int statusCode() { ... };
X select(int z) { ... };
C<X> copy() { ... };

}

// Scala
class C[X] {
def statusCode(): Int = ...
def select(x : Int): X = ...
def copy(): C[X] = ...

}

Assume that we are de�ning such a class in a language with de�nition-site variance. We now try

to determine the variance of type parameter X.

(a) (4 Points) Can we safely mark type variable X as covariant? Explain.

(b) (4 Points) Can we safely mark type variable X as contravariant? Explain.

Personal Identi�er:

P.7

Question 5 (7 Points)

Consider the following program in Mystery. Assume that the program is well-formed and exe-

cutable, and uses by-value parameter passing, static storage binding for global variables, stack-
dynamic storage binding for all other variables, and static scoping:

1 VAR x : INTEGER;
2 PROCEDURE P(z : INTEGER) : INTEGER =
3 PROCEDURE Q(w : INTEGER) : INTEGER =
4 BEGIN
5 RETURN w + x
6 END;
7 PROCEDURE R(x : INTEGER, y : INTEGER) : INTEGER =
8 BEGIN
9 RETURN Q(z)

10 END
11 BEGIN
12 RETURN R(2, z)
13 END
14 BEGIN
15 x := 0;
16 PRINT P(1);
17 PRINT 0
18 END

(a) (4 Points) What is the scope of the variables listed below? List the number of all lines during

whose execution the variable is in scope. You can use range notation (e.g., “5–12”).

x (line 1)

z (line 2)

y (line 7)

(b) (3 Points) What is the di�erence between the scope and the lifetime of a variable? Use the

code above as an example.

Personal Identi�er:

P.8

Question 6 (7 Points)

Consider the language L0 whose syntax we de�ne via the nonterminal 〈expr〉 in the following

grammar:

〈expr〉 ::= nat
| 〈ltv〉
| 〈expr〉 ‘@’ 〈expr〉
| 〈expr〉 ‘+’ 〈expr〉
| ‘[’ 〈cont〉

〈ltv〉 ::= ‘U’
| ‘D’

〈cont〉 ::= 〈ltv〉 〈lock〉
| 〈expr〉 ‘,’ 〈cont〉

〈lock〉 ::= ‘L’ 〈lock〉
| ‘]’

where nat describes the natural numbers (N).

(a) (4 Points) For each of the following token sequences, mark whether they are productions

of the L0 grammar:

[U]

[1 , [D L]

[1 , 3 , L L]

[3 , U L]

(b) (3 Points) Assume that the operators ‘+’ and ‘@’ are left-associative, and that ‘@’ has a higher

precedence than ‘+’. Draw the parse tree for the following expression: 1 + 2 @ 3 + 4

Personal Identi�er:

P.9

Question 7 (12 Points)

Consider the following program in Java (on the left) or Scala (on the right); both programs are

equivalent. Assume that we run this program once.

1 class A {
2 void f() { }
3 void g(A a) { a.f(); }
4 }
5

6 class B extends A {
7 @Override
8 void f() { }
9 }

10

11 class C extends A {
12 @Override
13 void f() { h(); }
14 void h() { }
15 }
16

17 class D extends C {
18 @Override
19 void h() { }
20 }
21 A v = new B();
22 A z = new D();
23 v.f();
24 z.g(v);
25 v.g(z);

1 class A {
2 def f() { }
3 def g(a : A) { a.f(); }
4 }
5

6 class B extends A {
7 override
8 def f() { }
9 }

10

11 class C extends A {
12 override
13 def f() { h(); }
14 def h() { }
15 }
16

17 class D extends C {
18 override
19 def h() { }
20 }
21 var v : A = new B()
22 var z : A = new D()
23 v.f();
24 z.g(v);
25 v.g(z);

(a) (3 Points) What static type(s) is variable a (line 3) bound to? Explain.

(b) (3 Points) What dynamic type(s) is variable a (line 3) bound to? Explain.

(c) (6 Points) What methods (e.g., A.f, A.g) will this program call, and in which order?

Personal Identi�er:

P.10

Question 8 (15 Points)

Consider the language de�ned below:

〈expr〉 ::= num
| 〈pol〉
| 〈expr〉 ‘*’ 〈expr〉

〈pol〉 ::= ‘ID’ | ‘ZERO’ | ‘NEG’

where num describes the integers (Z = {. . . ,−1, 0, 1, . . .}).
To de�ne the type system and the natural semantics, we use the following metavariables:

n1, n2 Integer values (from num)

p1, p2 Productions of 〈pol〉
e1, e2 Productions of 〈expr〉
τ1, τ2 Types; must be either Int or Pol.

The Type System below assigns one of the two types Int or Pol:

n1 : Int
(Tn)

p1 : Pol
(Tp)

e1 : τ1 e2 : Int
e1 * e2 : Int

(Tm1) e1 : Int e2 : τ2
e1 * e2 : Int

(Tm2)

The Natural Semantics are:

n1 ⇓ n1
(num)

p1 ⇓ p1
(pol)

e1 ⇓ n1 e2 ⇓ n2

e1 * e2 ⇓ n1 · n2
(mul)

e1 ⇓ ID e2 ⇓ n2

e1 * e2 ⇓ n2
(mpI)

e1 ⇓ ZERO e2 ⇓ n2

e1 * e2 ⇓ 0
(mpZ)

e1 ⇓ NEG e2 ⇓ n2

e1 * e2 ⇓ −n2
(mpN)

where n1 · n2 stands for arithmetic multiplication of n1 and n2.

(a) (4 Points) Are any parts of the language’s semantics unde�ned? Explain.

(b) (3 Points) What does the expression ‘NEG * 2 * 3’ evaluate to? Explain which rules you

used to arrive at your conclusion.

Personal Identi�er:

P.11

(c) (6 Points) Extend the natural semantics such that the operator * can combine two Pol
symbols, e.g., ID * ZERO. Ignore the type system for now. Your semantics should ensure

that evaluating (p1*p2)*n1 gives the same result as evaluating p1*(p2*n1).

(d) (2 Points) Are any changes to the type system necessary to allow the operator * to combine

two Pol symbols? If yes, describe the necessary changes on a high level. If no, explain your

answer and name the applicable type rules.

Personal Identi�er:

P.12

Question 9 (12 Points)

Consider the following piece of Standard ML code:

datatype tree = N
| B of tree (* left child *)

* int (* value *)
* tree (* right child *)

This binary tree stores int values in each B node.

In the following, you do not have to get the syntax exactly right, as long as it is unambiguous what
you are doing. Add explanations whenever you are in doubt about your syntax.

(a) (4 Points) Write a function contains : (tree, int) -> bool that checks whether a

tree contains the int parameter that is passed in. Assume that the tree is sorted so that

for any B node b, the left child of b only contains values less than the value stored in b and

the right child of b only contains values greater than the value stored in b.

(b) (5 Points) Write a function map : (int -> int) -> tree -> tree that works analo-

gously to the list map function that we discussed in class. In other words, a call to map with

parameter f : int -> int and parameter tr : tree should replace all values v in tr
by f(v). Your function should otherwise leave the tree structure unchanged.

(c) (3 Points) Assume that you have t : tree. Call map : (int -> int) -> tree -> tree
on t to increment all values in t by 2.

Personal Identi�er:

P.13

Question 10 (8 Points)

Answer the following question about abstract datatypes.

(a) (4 Points) What is an abstract datatype? Explain with a short code example in a language

of your choice. Make sure to state which language you are using.

(b) (4 Points) We discussed two concepts that programming languages use for supporting ab-

stract datatypes in the type system: subtyping and typeclasses. Give one di�erence between

these two concepts that a�ects expressivity or reliability.

Personal Identi�er:

P.14

Question 11 (3 Points)

Which of these following three kinds of storage location binding can give rise to the Dang-

ling Pointer Problem in a language with manual (explicit) memory management? Explain your
answers.

(a) (1 Point) Variables with static memory binding.

(b) (1 Point) Variables with stack-dynamic memory binding.

(c) (1 Point) Variables with explicit heap-dynamic memory binding.

Personal Identi�er:

P.15

