Examination in Compilers, EDANG5

Department of Computer Science, Lund University

2024-10-29, 14.00-19.00

SOLUTIONS

Max points: 60

For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

1 Lexical analysis

a) (3p)
The examples 00 and 007 fit the regular expressions for both DECIMAL and OCTAL.
By placing the rule for OCTAL before the rule for DECIMAL, these two examples will
be matched with OCTAL.

b) (3p)
The DFAs for the regular expressions:

0-9
0-9
DECIMAL 0-7

0-7

OCTAL 0-9a-f

HEXADECIMAL

c) (6p)
Combined NFA to the left. Equivalent DFA to the right.

0-9 0-9

DECIMAL

DECIMAL 0-7
89
DECIMAL
0-7

HEXADECIMAL HEXADECIMAL

d) (3p)
As alternatives to HEXADECIMAL ("0x19"), the scanner could return either DECIMAL ("0")
or HEXADECIMAL ("0x1") as the first token.

2 Context-Free Grammars

a) (5p)

An example sentence is
" (ll ID ll) " ID myen ID EOF

For this sentence, the following two parse trees can be constructed:

Start Start
/N
Exp EOF Exp EOF
%\ /\
" dlist)" Exp /E"w
Imelds E)l({le " IdList ")" E)|(p
ID ID/helds ID
b) (5p)

The following equivalent unambiguous grammar gives parse trees that are more
similar to the left tree above (i.e., lambdas can have multiplications as subtrees, but
not the other way around):

po: Start -> Exp EOF

p1: Exp -> "(" IdList ")" Exp
p2: IdList -> ID Morelds

p3: Morelds -> ¢

ps: Morelds -> "," ID Morelds
ps: Exp -> Factor

pe: Factor -> Factor "*" ID
pr: Factor -> ID

Another equivalent unambiguous grammar is the following, which gives parse trees
more similar to the right-hand tree above (i.e., multiplications can have lambdas as
subtrees, but not the other way around):

po: Start -> Exp EOF

p1: Exp -> Exp "*" ID

p2: Exp -> Factor

ps: Factor -> "(" IdList ")" Factor
pg: IdList -> ID Morelds

ps: Morelds -> ¢

pe: Morelds -> "," ID Morelds

pr: Factor -> ID

(5p)
First, we can realize that productions ps — p4 can be simplified by using repetition
instead of recursion as follows:

IdList -> ID ("," ID)*

If we then inline IdList and write productions pi, ps, and pg as alternatives for
Exp, we get the following equivalent EBNF grammar with only two nonterminals:

Start -> Exp EOF
Exp - n(n ID (Il’ll ID)* ll)ll EXp | Exp "y ID | ID

Alternative solutions

It is possible to eliminate recursion also for Exp, and replace recursion with repeti-
tion. To do this, we can realize that the token sequence resulting from an Exp will
consist of zero or more

"(" IdList ")"
followed by a single
ID
and then followed by zero or more
"*"ID
Therefore, Exp can be rewritten as:
Exp -> C "(" ID ("," ID)* ")")* ID ("=" ID)*

Since Exp no longer is recursive, it can be inlined in Start, and we then get the
following equivalent EBNF grammar with only one nonterminal:

Start -> ("(" ID (",” ID)* ")")* ID ("*" ID)* EOF

This is arguably not very easy to read, so fewer nonterminals is not necessarily
preferable. If you managed to construct this solution, you will, however, get an
extra bonus point!

(5p)
The LL(1) parser table
EOF e "y ID "o ran
Start p® pO®
Exp pl,p5 p5,p6
IdList p2
Morelds p3 p4

3 Program analysis
a) (5p)
Attribute grammar for Action.numItemsBefore() and Action.numItemsAfter():

inh int Action.numItemsBefore();
syn int Action.numItemsAfter();

eq Program.getActionList().numItemsBefore() = 0;
eq ActionListl.getTail () .numItemsBefore() = getHead().numItemsAfter();

eq Forward.numItemsAfter() = numItemsBefore();
eq Pick.numItemsAfter () = min(numItemsBefore() + 1, 3);
eq Place.numItemsAfter () = max(numItemsBefore() - 1, 0);
b) (5p)

Attribute grammar for Program. failedPicks():

coll Counter Program.failedPicksCount();
Pick contributes 1
when numItemsBefore() == 3

to Program.failedPicksCount();

syn int Program.failedPicks() = failedPicksCount().count();

4 Code generation and run-time systems

a)

The situation at *** PCl *#%%*
stack of heap of
activations objects
class
value=9
next
class
value=7
next
class
value=3
next = null
/—P class
. s — top
main dynlink \\
b)
The situation at *** PC2 ***
stack of heap of
activations objects
v=3
Entry.sum dynlink _ dass
retaddr vaLu:X: 9
Entry.sum this (Entry.sum) —
v=9 class
dynlink i value=7
t
retaddr nex
Stack.sum | this (Entry.sum)— class
dynlink — value =3
next = null
retaddr
this (Stack.sum) — class
. S — top
main dynlink \\
6

(5p)

c)

(5p)

The drawing enhanced with root pointers (R) as well as dead (D) and live (L)

objects.

Entry.sum

Entry.sum

Stack.sum

main

stack of
activations

v=3
dynlink ~

heap of
objects

retaddr
this (Entry.sum) —
v=9
dynlink i

class
value=9
next

retaddr
this (Entry.sum) —
dynlink —

class
value=7
next

retaddr
this (Stack.sum) —
s |
dynlink —

class
value =3
next = null

class
top

	Lexical analysis
	Context-Free Grammars
	Program analysis
	Code generation and run-time systems

