
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2024–10–29, 14.00-19.00

Note! Your exam will be marked only if you have completed all six pro-
gramming lab assignments in advance.

Start each solution (1, 2, 3, 4) on a separate sheet of paper. Write only on
one side of each sheet. Write your anonymous code and personal identifier1

on every sheet of paper. Write clearly and legibly. Try to find clear, read-
able solutions with meaningful names. Unnecessary complexity will result
in point reduction.

The following documents may be used during the exam:

• Reference manual for JastAdd2

• x86 Cheat Sheet

Max points: 60
For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

Good luck!

1The personal identifier is a short phrase, a code or a brief sentence of your choice. It can be
anything, but not something that can reveal your identity. The purpose of this identifier is to make it
possible for you to identify your exam in case something goes wrong with the anonymous code on the
exam cover (such as if it is confused with another code due to sloppy writing).

1

1 Lexical analysis

Alice and Bob are defining a language with decimal, octal, and hexadecimal literals. A
decimal literal should consist of one or more decimal digits as defined by the regular
expression [0-9]+. An octal literal should always start with a 0 followed by one or
more octal digits (0[0-7]+). A hexadecimal literal should always start with 0x followed
by one or more hexadecimal digits (0x[0-9a-f]+). They write down some test cases
to define what tokens different example literals should result in:

Example Token

0 DECIMAL

910 DECIMAL

750 DECIMAL

019 DECIMAL

00 OCTAL

007 OCTAL

0x19 HEXADECIMAL

0x1a7e HEXADECIMAL

a) Alice and Bob realize there is some ambiguity in their regular expressions, but that
they can rely on rule priority to resolve it. Which of the above examples will be
disambiguated by rule priority? In what order should Alice and Bob write down the
rules for DECIMAL, OCTAL, and HEXADECIMAL in their scanner specification to get the
desired result? (3p)

b) Translate each of the regular expressions to a separate DFA. The final states should
be labelled with the appropriate tokens. (3p)

c) Construct an NFA by joining the DFAs into a single automaton with a joint start
state. Label each state with a unique number. Then construct an equivalent DFA
where each state is labelled with the set of corresponding states in the original NFA.
The DFA should have as few states as possible. Each final state should be labelled
with the appropriate token. (6p)

d) Suppose there is an additional regular expression for whitespace ([\]). Consider
the string "0x19 007 910". If the longest match rule is used, the scanner will
return HEXADECIMAL("0x19") as the first token. Suppose the scanner does not use
the longest match rule for disambiguation. What other token(s) could it then return
as the first token?

(3p)

2

2 Context-Free Grammars

Consider the following context-free grammar for lambdas and multiplication expres-
sions. (ID is a predefined token for identifiers and EOF is a token representing end of
file.)

p0: Start -> Exp EOF
p1: Exp -> "(" IdList ")" Exp
p2: IdList -> ID MoreIds
p3: MoreIds -> ϵ
p4: MoreIds -> "," ID MoreIds
p5: Exp -> Exp "*" ID
p6: Exp -> ID

a) The grammar is ambiguous. Prove this by finding a sentence that can be matched
with two different parse trees, and draw the two trees. (5p)

b) Construct an equivalent unambiguous grammar. The grammar should be on canon-
ical form.

(Depending on how you do the disambiguation, the parse tree for the example sen-
tence you used in 2a may be more similar to one or the other of the two trees you
drew. It does not matter which one.) (5p)

c) Construct a grammar on EBNF form that is equivalent to the original ambiguous
grammar. The EBNF grammar should have as few nonterminals as possible. (Recall
that EBNF allows the use of alternatives, repetition, optionals, and parentheses.)

(5p)

d) Construct the LL(1) parser table for the original ambiguous grammar. (5p)

3

3 Program analysis

The following abstract grammar defines a robot language with actions Forward, Pick,
and Place. At the Forward action, the robot takes a step forward. At the Pick action,
the robot picks up an item from the floor. However, the robot can hold at most three
items, so if it already has three items, the Pick action has no effect. At the Place
action, the robot places one of its items on the floor. If the robot does not hold on to
any item, the Place action has no effect. The actions are arranged in a sequence, using
ActionList nodes: ActionList0 is an empty list, and ActionList1 is a list with at
least one action.

Program ::= ActionList;

abstract ActionList;

ActionList0 : ActionList;

ActionList1 : ActionList ::= Head:Action Tail:ActionList;

abstract Action;

Forward : Action;

Pick : Action;

Place : Action;

The figure below shows the AST for an example robot program where the robot
first does a Place, then a Forward, and finally a Pick action. Initially, the robot has no
items, so in this case, the Place action will have no effect, and after executing the last
action, the robot will be holding one item.

Solve the problems below using attribute grammars, and without using instanceof
or getParent(). Make sure to clearly indicate the kind of each attribute you declare,
i.e., if it is a synthesized (syn), an inherited (inh), or a collection (coll) attribute.

4

a) Define the attributes Action.numItemsBefore() and Action.numItemsAfter().
The values should be the number of items the robot holds before and after executing
the action. In the example above, the value of numItemsAfter() should be 0 for
Place and Forward, and 1 for Pick. The values for numItemsBefore() should be 0
for all three actions.

You may assume the existence of the following two methods:

int min(int v1, int v2) { ... } // returns the minimum of v1 and v2

int max(int v1, int v2) { ... } // returns the maximum of v1 and v2

(5p)

b) Add an integer attribute Program.failedPicks() that uses a collection attribute
to count the number of failed Pick actions in the program, i.e., Pick actions for
which the robot already holds three items. You may use the attributes you defined
in problem 3a). For the collection attribute, you may use the following Counter
class:

public class Counter {

private int count = 0;

public void add(int increment) {

count = count + increment;

}

public int count() {

return count;

}

}

(5p)

5

4 Code generation and run-time systems

Consider the following program in a Java-like language:

void main() {

Stack s = new Stack();

s.push(3);

s.push(7);

s.pop();

s.push(9);

// *** PC1 ***

print("Sum of all stacked elements is " + s.sum()); // Should print 12

}

class Stack {

Entry top = null;

void push(int x) {

Entry e = new Entry(x);

if (top == null)

top = e;

else

e.next = top;

top = e;

}

void pop() {

if (top != null)

top = top.next;

}

int sum() {

if (top == null)

return 0;

else

return top.sum();

}

}

class Entry {

int value = 0;

Entry next = null;

Entry(int v) {

this.value = v;

}

int sum() {

int v = value;

if (next == null)

// *** PC2 ***

return v;

else

return next.sum() + v;

}

}

6

In the following problems, you should draw the situation on the stack and heap.
You should assume that the code is not optimized, and that no garbage collection is
performed. Your drawing should include:

• all current frames on the stack, including dynamic link and any local variables
and arguments.

• the values of all local variables and arguments, including static links (this point-
ers)

• a label on each frame with the method name, e.g., main or Stack.sum.

• all objects that have been created on the heap, including their instance variables

• the values of all instance variables

• a label on each object with the class name, e.g., Stack or Entry

a) Execution starts in the method main. Draw the situation on the stack and heap
when the program counter is at the position marked with *** PC1 ***. (5p)

b) Consider now that the execution has continued until the program counter is at the
position marked with *** PC2 ***. Extend your drawing to show the additional
frames created. (5p)

c) In your drawing from 4a) and 4b), mark all root pointers with an R, all live objects
with an L, and all dead objects with a D. (5p)

7

	Lexical analysis
	Context-Free Grammars
	Program analysis
	Code generation and run-time systems

