
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2023–10–27, 14.00-19.00

Note! Your exam will be marked only if you have completed all six pro-
gramming lab assignments in advance.

Start each solution (1, 2, 3, 4) on a separate sheet of paper. Write only on
one side of each sheet. Write your anonymous code and personal identifier1

on every sheet of paper. Write clearly and legibly. Try to find clear, read-
able solutions with meaningful names. Unnecessary complexity will result
in point reduction.

The following documents may be used during the exam:

• Reference manual for JastAdd2

• x86 Cheat Sheet

Max points: 60
For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

Good luck!

1The personal identifier is a short phrase, a code or a brief sentence of your choice. It can be
anything, but not something that can reveal your identity. The purpose of this identifier is to make it
possible for you to identify your exam in case something goes wrong with the anonymous code on the
exam cover (such as if it is confused with another code due to sloppy writing).

1

1 Lexical analysis

A language defines the tokens F and G over the alphabet {a, b, c}. The tokens are
defined by the following NFA, where F has rule priority over G in case of ambiguities.

a) For each token, list all strings of length 5 or shorter, taking rule priority into ac-
count. (5p)

b) Write down the regular expressions for the two tokens. Each expression should be
as simple as possible. (5p)

c) Construct a DFA that is equivalent to the NFA and where each state is labelled
with the set of corresponding NFA states. The DFA should have as few states as
possible. Each final state should be labelled with the appropriate token, taking rule
priority into account. (5p)

2

2 Grammars

Consider the following grammar for a small language:

p0 : start → stm EOF

p1 : stm → "if" exp "then" stmlist "fi"

p2 : stm → "if" exp "then" stmlist "else" stmlist "fi"

p3 : stm → ID "=" exp ";"

p4 : stmlist → stm stmlist

p5 : stmlist → ϵ
p6 : exp → exp "+" factor

p7 : exp → factor

p8 : factor → ID

p9 : factor → "(" exp ")"

where start is the start symbol and the alphabet used is

EOF, "if", "then", "fi", "else", ID, "=", ";", "+", "(", ")"

a) Draw a derivation tree for the following token sequence:

"if" ID "then" ID "=" ID ";" "fi" EOF

The derivation tree should follow the grammar exactly, including all terminals and
nonterminals.

(5p)

b) Consider again the input sequence "if" ID "then" ID "=" ID ";" "fi" EOF. Write
down the sequence of steps that an LR parser would take for parsing this program
according to the grammar above. For each step, show the stack contents, the re-
maining input, and the shift/reduce/accept action taken as in the following table:

stack • remaining input action
• "if" ID "then" ID "=" ID ";" "fi" EOF ...

... •

(5p)

c) The grammar above is not LL(1). Construct an equivalent grammar that is on
canonical form and that is LL(1). Enumerate the productions of the LL(1) grammar
(i.e., p1, p2, ... and so on).

(5p)

d) Construct an LL(1) table for the grammar you constructed in 2(c).

(5p)

3

3 Program analysis

Consider the following example in a small language where a program is simply a list
of variable declarations, assignments, and function calls. (The functions are defined
elsewhere.)

int a;

int b;

a = 1 + f1(2,8) + f2(4,3,4);

b = a + 2;

f3(a + 3 + f4(5+a));

In this example, the value of b is never accessed in any computation. The variable
occurs only on the left-hand side of an assignment, and not in any position where
its value is accessed: b is not used in any right-hand side of an assignment, or as an
argument in a function call. We say that the variable b is dead : it could be removed
without changing the meaning of the program.

Solve the problems below using reference attribute grammars. Note that you may
neither use instanceof nor the getParent() method.

a) Construct a JastAdd abstract grammar for this language. The grammar should
make use of the following two existing node classes for variable declarations and
uses, respectively:

IdDecl ::= <ID>;

IdUse ::= <ID>;

(3p)

b) Assume that a name analysis aspect already has been implemented, defining the
following attributes

syn IdDecl IdUse.decl() = ...

syn nta Undeclared Program.undeclared() = ...

Here, decl refers to the appropriate IdDecl, or to undeclared if the declaration is
missing. Undeclared is an abstract grammar subclass of IdDecl:

Undeclared : IdDecl;

Define a collection attribute IdDecl.uses() that contains the set of IdUses bound
to that IdDecl. (4p)

c) Define a boolean inherited attribute IdUse.valueAccessed() that is true if the
IdUse is in a position where its value is accessed (like in the right-hand side of an
assignment, or in the argument to a function call). (4p)

4

d) Define a boolean synthesized attribute IdDecl.dead() that is true if none of its
IdUses are in a position where the variable value is accessed. To help defining this
attribute, use the attributes defined in 3b and 3c.

In the example above, IdDecl.dead() should be false for a and true for b. (4p)

Note

It can be noted that the analysis in 3d is very simple, and will not find all variables
that can be removed. For example, if a statement c = b is added, then the analysis
would no longer consider b to be dead, even if the value of c is not used (and
therefore dead). A more sophisticated analysis could handle such transitivity, and
it could also take the order of assignments into account.

Turn page for problem 4

5

4 Code generation and run-time systems

Consider the following program in a C-like language:

int a(int x, int y) {

int z = x+y;

// ** PC **

return z;

}

int b(int x, int y) {

return x*y;

}

int c(int x) {

return x*2;

}

int d(int x, int y, int z) {

int r = z;

r = b(a(c(y), r), x+1);

return r + 1;

}

void main() {

int s = d(5, 2, 3);

...

}

a) A compiler for the language generates unoptimized code that pushes temporaries on
the stack. Arguments are passed on the stack (not in registers). The return value
is passed in the rax register. Arguments should be pushed right-to-left so that the
first argument is closest to the frame of the called method. It is ok to also evaluate
the arguments from right to left.

Write down the x86 code generated by the compiler for the d method.

Use only the instructions on the x86 Cheat Sheet. Use rbp as frame pointer and rsp
as stack pointer. You are encouraged to comment your code to help us understand
your intention. For simplicity and readability, you may leave out the characters
q, $, %, and , in the code. For example, you may write add 8 rax instead of
addq $8, %rax. (5p)

b) The execution starts by a call to main. Draw the situation on the stack when the
execution has reached the location indicated by ** PC **.

Your drawing should include stack frames, stack pointer, frame pointer, dynamic
links, parameters and local variables. Temporary values do not have to be drawn.
Include the actual values known at that point in execution, including dynamic links,
and mark which frame is which. The drawing should be consistent with the code in
problem 4 a). (5p)

6

	Lexical analysis
	Grammars
	Program analysis
	Code generation and run-time systems

