
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2022–10–25, 14.00-19.00

SOLUTIONS

Max points: 60
For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

1

1 Lexical analysis

a) (4p)
Regular expressions

DO = "do"

SID = [a-z]

ID = [a-z][a-z]+

WS = " " | \n

Note that DO needs to be defined before ID because of rule priority.

Note that this alternative definition of whitespace would also work fine:

WS = (" "|\n)+

Note also that using a character class would also work fine to define whitespace.
E.g., [\ \n] or [\ \n]+ .

b) (4p)
Finite automata for the four regular expressions.

c) (2p)
Combined NFA.

2

d) (5p)
DFA for the NFA in 1c)

3

2 Grammars

a) (5p)

Equivalent grammar on canonical form:

p0 : start → exp EOF

p1 : exp → ID

p2 : exp → ID "(" optList ")"

p3 : optList → ε
p4 : optList → exp moreExp

p5 : moreExp → ε
p6 : moreExp → "," exp moreexp

p7 : exp → exp "+" exp

p8 : exp → "(" exp ")"

Note that there are several other possible equivalent grammars.

b) (5p)
Parse tree according to the grammar in (a):

4

c) (5p)
The FOLLOW set for exp is

{ EOF, ")", "+", "," }

To prove that each of these terminals are in the FOLLOW set, we construct deriva-
tions from the start symbol that show that each of them can follow directly after
an exp symbol. We can, for example, construct the following derivations:

start ⇒ exp EOF
start ⇒ exp EOF ⇒ "(" exp ")" EOF
start ⇒ exp EOF ⇒ exp "+" exp EOF
start ⇒ exp EOF

⇒ ID "(" optList ")" EOF
⇒ ID "(" exp moreExp ")" EOF
⇒ ID "(" exp "," exp moreExp ")" EOF

d) (5p)

Equivalent LL(1) grammar:

p0 : start → exp EOF

p1 : exp → term exprest

p2 : exprest → "-" exp

p3 : exprest → "+" exp

p4 : exprest → ε
p5 : term → ID

p6 : term → "(" exp ")"

Note that there are several other equivalent LL(1) grammars. Details for how to
arrive at this particular solution:

We start by rewriting the original grammar to canonical form:

start → exp EOF

exp → exp "-" exp

exp → exp "+" exp

exp → ID

exp → "(" exp ")"

We see now that there are ambiguities in the grammar, due to the productions

exp → exp "-" exp

exp → exp "+" exp

The ambiguities can be eliminated by replacing one of the exp operators in the
binary expressions with a more restricted nonterminal, term. We choose to replace
the left operand so that we introduce right recursion instead of left recursion. To
restrict what a term can be, we change the two last productions to go from term
instead of from exp. We also need to make it possible to derive a term from an exp,
so we add that production. We now get:

5

start → exp EOF

exp → term "-" exp

exp → term "+" exp

exp → term

term → ID

term → "(" exp ")"

We see now that there is a common prefix in the grammar. It needs to be eliminated
to make the grammar LL(1). We do this by introducing a new nonterminal, exprest,
for the remainder after the common prefix, resulting in the solution given earlier.
We cannot see any obvious LL(1) problems in the solution grammar, but to be
certain that it is LL(1), we would need to construct the LL(1) table, as will be done
in (e).

e) (5p)

The LL(1) table:

EOF "-" "+" ID "(" ")"

start p0 p0

exp p1 p1

exprest p4 p2 p3 p4

term p5 p6

Since there is no conflict, the grammar is LL(1).

6

3 Program analysis

a) (5p)
Attribute grammar:

inh Type ReturnStmt.funcType();

eq Function.getChild().funcType() = getType();

syn boolean ReturnStmt.missingReturnValue() =

!hasReturnValue() && !funcType().isVoid();

syn boolean ReturnStmt.uselessReturnValue() =

hasReturnValue() && funcType().isVoid();

syn boolean Type.isVoid() = false;

eq VoidType.isVoid() = true;

b) (5p)
Attribute grammar:

syn boolean Function.sufficientReturns() = getBlock().sufficientReturns();

syn boolean Stmt.sufficientReturns() = false;

eq Block.sufficientReturns() {

for (Stmt s : getStmts()) {

if (s.sufficientReturns()) return true;

}

return false;

}

eq ReturnStmt.sufficientReturns() = true;

eq IfStmt.sufficientReturns() =

hasElse() && getThen().sufficientReturns() && getElse().sufficientReturns();

7

4 Code generation and run-time systems

a) (5p)
The situation at runtime:

b) (5p)

Addresses used in B.m:

this object 16(%rbp)

y field 16(%rbp) + 16

x86 code for B.m:

B.m:

pushq %rbp # push old frame pointer (the new dynamic link)

movq %rsp, %rbp # set new frame pointer

movq 16(%rbp), %rax # address of this object -> rax

movq $3, 16(%rax) # 3 -> y

movq %rbp, %rsp # Move back stack pointer

popq %rbp # Restore the frame pointer

ret # Return to calling method

8

	Lexical analysis
	Grammars
	Program analysis
	Code generation and run-time systems

