
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2022–10–25, 14.00-19.00

Note! Your exam will be marked only if you have completed all six pro-
gramming lab assignments in advance.

Start each solution (1, 2, 3, 4) on a separate sheet of paper. Write only on
one side of each sheet. Write your anonymous code and personal identifier1

on every sheet of paper. Write clearly and legibly. Try to find clear, read-
able solutions with meaningful names. Unnecessary complexity will result
in point reduction.

The following documents may be used during the exam:

• Reference manual for JastAdd2

• x86 Cheat Sheet

Max points: 60
For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

Good luck!

1The personal identifier is a short phrase, a code or a brief sentence of your choice. It can be
anything, but not something that can reveal your identity. The purpose of this identifier is to make it
possible for you to identify your exam in case something goes wrong with the anonymous code on the
exam cover (such as if it is confused with another code due to sloppy writing).

1

1 Lexical analysis

A language has two kinds of identifiers: SIDs and IDs. A SID consists of a single
lowercase letter, like a, b, etc. An ID consists of lowercase letters, and must be at least
two letters long, e.g., ab, aabzcd, etc. The language also has a number of keywords,
e.g., do. Whitespace consists of blanks and newlines.

a) Use regular expressions to write down token definitions for SID, ID, DO, and WHITE-
SPACE. The usual disambiguation rules of rule priority and longest match apply.

(4p)

b) Draw four small finite automata, one for each of SID, ID, DO, and WHITESPACE. Mark
the final state of each automaton with the token in question. (4p)

c) Combine the four automata to one NFA by joining their start states, and mark each
state with a unique number. (2p)

d) Construct a DFA that is equivalent to the NFA and that has as few states as possible.
Mark each DFA state with the state numbers from the corresponding states in the
NFA. Mark each final state by the appropriate token, taking disambiguation rules
into account if necessary.

(5p)

2

2 Grammars

Consider the following EBNF grammar for expressions:

start → exp EOF

exp → ID | ID "(" [exp ("," exp)∗] ")" | exp "+" exp | "(" exp ")"

where start is the start symbol and the alphabet used is

{ EOF, ID, "(", ")", ",", "+" }

a) Construct an equivalent grammar on canonical form. The grammar should include
the same nonterminals start and exp, as well as additional nonterminals in order
to eliminate the EBNF constructs. (5p)

b) Draw a parse tree for the following token sequence:

"(" ID "(" ID "," ID ")" "+" ID "(" ")" ")" EOF

The parse tree should follow your grammar from 2(a) exactly, including all terminals
and nonterminals.

(5p)

c) Construct the FOLLOW set for the nonterminal exp. Prove that each element
belongs to FOLLOW by showing derivations from the exp symbol, and marking out
the element (e.g., by underscoring it). Use the grammar you constructed in 2(a). A
derivation should be written in the form

start ⇒ ... ⇒ ...

where only one nonterminal is replaced in each derivation step.

(5p)

d) Consider the following grammar on EBNF form:

start → exp EOF

exp → ID | exp "-" exp | exp "+" exp | "(" exp ")"

Construct an equivalent grammar that is on canonical form and that is LL(1).
Enumerate the productions of the LL(1) grammar (i.e., p1, p2, ... and so on).

(5p)

e) Construct an LL(1) table for the grammar you constructed in 2(d).

(5p)

3

3 Program analysis

MinC is a small C-like procedural language, where a program consists of a number of
function definitions. Functions can be void, or return a value of type int. Below, parts
of the abstract grammar for MinC is shown.

Program ::= Function*;

Function ::= Type IdDecl Param* Block;

Block : Stmt ::= Stmt*;

abstract Stmt;

IfStmt : Stmt ::= Cond:Expr Then:Stmt [Else:Stmt];

Assignment : Stmt ::= IdUse Expr;

ReturnStmt : Stmt ::= [ReturnValue:Expr];

CallStmt : Stmt ::= Func:IdUse Arg:Expr*;

abstract Type;

VoidType : Type;

IntType : Type;

...

If a function is void, the return statements inside it should not return any value.
Functions of type int, on the other hand, must return a value on each possible execution
path through the code.

For example, the following three functions are compile-time incorrect: f1 will not
return any value if the p<0 condition is false; f2 lacks a return value in the return
statement; f3 has a return statement with a useless return value.

int f1(int p) { int f2(int p) { void f3(int p) {

if (p<0) { print(2); print(3);

return 1; return; return 3;

} } }

}

Solve the problems below using reference attribute grammars. Note that you may
neither use instanceof nor the getParent() method.

a) Construct an aspect that computes two boolean attributes:

ReturnStmt.missingReturnValue() that is true for return statements that lack a
value and are located inside a non-void function.

ReturnStmt.uselessReturnValue() that is true for return statements that have
a value and are located inside a void function.

(5p)

b) Construct an aspect that computes a boolean attribute Function.sufficientReturns()
that is true if the function returns a value on each execution path through the func-
tion. Note that this attribute is defined for all functions, regardless of if they are
void or not, but it will be interesting to access only for functions that are not void.
(It’s value for void functions does not matter.)

(5p)

4

4 Code generation and run-time systems

Consider the following program in a Java-like language:

class Program {

public static void main(String[] args) {

doit(new B());

}

static void doit(A a) {

a.m();

}

}

class A {

int x = 0;

void m() { x = 1; }

void n() { x = 2; }

}

class B extends A {

int y = 0;

void p() { x = 7; }

void m() { y = 3; }

}

The language is implemented using virtual tables, without any optimizations.

a) In the program above, the main method calls the doit method with a new B object.
The method doit in turn calls the method m on that object. Draw the runtime
situation right before the return of m. Your drawing should include:

• method activations with dynamic links, static links ("this" pointers), argu-
ments, and local variables

• frame pointer and stack pointer

• objects with class descriptor links and fields

• class descriptors with virtual tables and pointers to the code

(5p)

b) Translate the method B.m() to x86 code. Use only the instructions on the x86
Cheat Sheet.

(For simplicity and readability, you may leave out the characters q, %, and , in the
code. For example, you may write add $8 rax instead of addq $8, %rax.) (5p)

5

	Lexical analysis
	Grammars
	Program analysis
	Code generation and run-time systems

