
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2021–10–29, 08.00-13.00

SOLUTIONS

Max points: 60
For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

1

1 Lexical analysis

a) (3p)
A regular expression for INT can be written, for example

INT = [0-9] ([_]* [0-9]+)*

or

INT = [0-9] ([0-9_]* [0-9])?

or

INT = [0-9]+ ([_]+ [0-9]+)*

b) (3p)
A DFA for INT

c) (3p)
A DFA for FLOAT

2

d) (4p)
The combined DFA

e) (2p)
An INT token for the lexeme "375_97" will be output. The scanner will need to
read two more characters to decide this: "_."

3

2 Grammars

a) (5p)

For example, the sentence EOF can be derived in the following two ways:

b) (5p)

The FOLLOW set for stmt is

{ "{", "}", ID, EOF }

To prove that each of these terminals are in the FOLLOW set, we construct deriva-
tions from the start symbol that show that each of them can follow directly after a
stmt symbol. We can, for example, construct the following derivation:

start ⇒ stmt EOF ⇒ "{" stmt "}" EOF

Here we see that a stmt symbol can be followed by EOF and by "}" .

To see that also "{" and ID can follow a stmt symbol, we can construct, for example,
the following derivations:

start ⇒ stmt EOF ⇒ stmt stmt EOF ⇒ stmt ID "=" NUM ";" EOF

and

start ⇒ stmt EOF ⇒ stmt stmt EOF ⇒ stmt "{" stmt "}" EOF

4

c) (5p)
An equivalent grammar on EBNF form, with as few nonterminals and production
alternatives as possible:

start → stmt* EOF

stmt → "{" stmt* "}" | ID "=" NUM ";"

d) (5p)

Equivalent LL(1) grammar:

p0 : start → stmtlist EOF

p1 : stmtlist → stmt stmtlist

p2 : stmtlist → ε
p3 : stmt → "{" stmtlist "}"

p4 : stmt → ID "=" NUM ";"

We can check that this grammar is LL(1) by constructing the LL(1) table:

"{" "}" ID "=" ";" NUM EOF

--

start p0 p0 p0

stmtlist p1 p2 p1 p2

stmt p3 p4

Since there is no conflict, the grammar is LL(1).

5

3 Abstract grammars and analysis

a) (5p)
Abstract grammar

Program ::= FuncDecl*;

abstract Stmt;

abstract Expr;

FuncDecl ::= <ID> Param* FuncDecl* Stmt*;

Param ::= <ID>;

Assignment:Stmt ::= IdUse Expr;

Returnstmt:Stmt ::= Expr;

CallStmt:Stmt ::= Call;

Call : Expr ::= IdUse Expr*;

IdUse : Expr ::= <ID>;

b) (5p)

Attribute grammar computing FuncCall.levelsOut():

inh int FuncDecl.level();

inh int FuncCall.level();

eq Program.getChild().level() = 0;

eq FuncDecl.getChild().level() = level()+1;

syn int FuncCall.levelsOut() {

if (decl() != null) {

return level() - decl().level();

}

return -1;

}

c) (5p)

Attribute grammar computing FuncCall.decl):

syn FuncDecl FuncCall.decl() = lookup(getIdUse().getID());

inh FuncDecl FuncCall.lookup(String s);

eq Program.getChild().lookup(String s) {

for (FuncDecl d : getFuncDecls())

if (d.getID().equals(s)) return d;

return null;

}

inh FuncDecl FuncDecl.lookup(String s);

eq FuncDecl.getChild().lookup(String s){

for (FuncDecl d : getFuncDecls())

if (d.getID().equals(s)) return d;

return lookup(s);

}

6

4 Runtime systems

a) (8p)
Stack:

b) (2p)
The frame pointer points to the start of the baz frame. Using the frame pointer,
the static link for baz can be accessed (2 words down) and followed to the start of
the foo frame. From this point, the static link for foo can be accessed (2 words
down), and followed to the start of the main frame. From there, the local variable
x is found 1 word up.

7

	Lexical analysis
	Grammars
	Abstract grammars and analysis
	Runtime systems

