
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2021–10–29, 08.00-13.00

Note! Your exam will be marked only if you have completed all six pro-
gramming lab assignments in advance.

Start each solution (1, 2, 3, 4) on a separate sheet of paper. Write only on
one side of each sheet. Write your anonymous code and personal identifier1

on every sheet of paper. Write clearly and legibly. Try to find clear, read-
able solutions with meaningful names. Unnecessary complexity will result
in point reduction.

The following documents may be used during the exam:

• Reference manual for JastAdd2

• x86 Cheat Sheet

Max points: 60
For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

Good luck!

1The personal identifier is a short phrase, a code or a brief sentence of your choice. It can be
anything, but not something that can reveal your identity. The purpose of this identifier is to make it
possible for you to identify your exam in case something goes wrong with the anonymous code on the
exam cover (such as if it is confused with another code due to sloppy writing).

1



1 Lexical analysis

A language has a token definition INT for integer literals. An INT may consist of digits
and underscores, and 0, 123, 45_99, and 066__7____28 are examples of valid INTs.
However, an INT may not start or end with an underscore, so strings like _54_5 and
67__ are not valid INTs.

The language also has a token definition FLOAT for float literals. A FLOAT is a
sequence of characters that contains at least one digit and exactly one decimal point.
Unlike INTs, a FLOAT may not contain any underscores. Examples of valid FLOATs are:

05.

.781

34.57

a) Construct a regular expression for INT. (3p)

b) Construct a DFA for INT. The DFA should be minimal (contain as few states as
possible). Give the states unique numbers. Mark the final state(s) with INT.

(3p)

c) Construct a DFA for FLOAT. The DFA should be minimal. Give the states unique
numbers, and that are different from the numbers you used in the INT DFA, except
for the start state which may use the same number. Mark the final state(s) with
FLOAT.

(3p)

d) Construct a combined DFA by joining the start states for the INT and FLOAT DFAs,
and eliminating any nondeterminism. Mark each state in the combined DFA with
the corresponding state number(s) from the INT and FLOAT DFAs. Mark each final
state in the combined DFA by the appropriate token. The DFA should be minimal.

(4p)

e) Consider input to a scanner consisting of the following sequence of characters:

375_97_.42_3abc

Suppose that INT and FLOAT are defined as above, and that the scanner uses longest
match when scanning. What token (INT or FLOAT) will be the first it will output
when scanning the input, and what lexeme (string) does this token correspond to?
Which additional characters will the scanner read before deciding to output this
token? (2p)

2



2 Grammars

Consider the following context-free grammar for statements:

p0 : start → stmt EOF

p1 : stmt → "{" stmt "}"

p2 : stmt → stmt stmt

p3 : stmt → ID "=" NUM ";"

p4 : stmt → ε

where start is the start symbol and the alphabet used is

{ "{", "}", "=", ";", ID, NUM, EOF }

a) The grammar is ambiguous. Prove this by constructing two different derivation
trees for the same sentence. Try to find the smallest trees that can be used to show
an ambiguity. (5p)

b) Construct the FOLLOW set for the nonterminal stmt. Prove that each of the
elements belongs to FOLLOW by showing derivations from the start symbol. A
derivation should be written in the form

start ⇒ ... ⇒ ...

where only one nonterminal is replaced in each derivation step.

(5p)

c) Construct an equivalent grammar on EBNF form with as few nonterminals and
productions as possible.

(5p)

d) Construct an equivalent grammar on canonical form and that is LL(1).

(5p)

3



3 Abstract grammars and analysis

The programming language Pyva (made up for this exam) is a bit similar to Python.
Functions are defined using the def keyword, and can be nested inside each other.
Variables are not declared. Instead, when running a program, a variable is created the
first time it is assigned a value.

Consider the following Pyva program. Here, the function main contains a local
function foo(y,z), which in turn contains two local functions bar(s) and baz(t).

A function can access not just local variables and parameters, but also variables
and parameters in outer functions. For example, the code in foo accesses the variable
x that is a local variable in the main function.

def main() {

def foo(y, z) {

def bar(s) {

return s + baz(y);

}

def baz(t) {

return t+x+z;

}

return x + bar(y);

}

x = 1;

print(foo(2, 3));

}

In problems 3 b) and 3 c), you will use reference attribute grammars. Note that
you may neither use instanceof nor the getParent() method in your solutions.

a) Construct an abstract grammar for Pyva, using the JastAdd notation. Use the
names Program for the root, FuncDecl for a function declaration, and FuncCall for
a function call. You may assume that all local function declarations occur before
the statements in a function. Your grammar should cover the example above and
similar programs.

(5p)

b) When a local variable is created, it is stored in the current frame. To access variables
in outer frames (corresponding to outer functions), the code generator or interpreter
needs to know how many levels out the variable is. Similarly, for function calls, the
code generator needs to know how many levels out the function definition is located.
This is needed to compute the static link for the called function (i.e., the pointer
to the frame of its enclosing function, and which is used when accessing non-local
variables).

For this purpose, an int attribute levelsOut for FuncCall will be used. The value
should be 0 if the definition of the called function is located zero levels out, i.e.,
it is in the same function as the function call, like the call to foo in main. The
value should be 1 if the called function is defined one level out from the function

4



containing the call, like the call to baz in bar. If the called function is defined two
levels out, the value should be 2, and so on. For example, if there had been a call
to foo inside bar, the value of levelsOut would be 2 for that call.

Define the attribute levelsOut for FuncCall. You may assume that name analysis
is already done, so that each FuncCall has an attribute FuncDecl decl that points
to the definition of the called function (or null if the function is not defined). You
can use the value levelsOut = -1 for calls to undefined functions.

Hint! It may be useful to define an int attribute level for function declarations
that is one more than that of its enclosing function. For example, the outermost
functions (like main) would have level=1, their local functions (like foo) would
have level=2, and so on.

(5p)

c) Define the attribute

syn FuncDecl FuncCall.decl();

that binds each call to its corresponding function, and that is null if no such
declaration exists.

(5p)

4 Runtime systems

A compiler for Pyva generates unoptimized code. Arguments are passed on the stack.
The static link is implemented as an implicit first argument. The return value is passed
in the rax register.

a) Draw the situation on the stack for the Pyva program in problem 3 when the exe-
cution is inside the baz function.

Your drawing should show stack frames, stack pointer, frame pointer, dynamic links,
local variables, arguments, and the static links. Include the actual values for argu-
ments and local variables that are known at that point in execution, and mark which
frame is which.

(8p)

b) Starting with the frame pointer, explain in English what steps are taken when the
function baz accesses the variable x. (2p)

5


	Lexical analysis
	Grammars
	Abstract grammars and analysis
	Runtime systems

