
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2020–10–28, 09.00-12.00

SOLUTIONS

Max points: 36
For grade 3: Min 18
For grade 4: Min 24
For grade 5: Min 30

1

1 Lexical analysis

a) (3p)

X = ab*c

Y = [ab]c+

Z = abc*

b) (5p)
The DFA

2

2 Grammars

a) (3p)
Parse tree for ID(ID,ID)$

b) (4p)

EBNF:

L → S $
S → A | C
A → ID "=" E

C → ID "(" [E ("," E)∗] ")"
E → ID | C

3

c) (5p)

We note that there are common prefixes in the grammar, one for S and one for E:

S => A => ID ...

S => C => ID ...

E => ID

E => C => ID ...

We can eliminate these common prefixes, resulting in the following grammar:

L → S $
S → ID SR

SR → "=" E

SR → "(" EL ")"

E → ID ER

ER → ε
ER → "(" EL ")"

EL → ε
EL → E RL

RL → ε
RL → "," E RL

We do not spot any more obvious common prefixes, nor any left recursion, nor any
ambiguities. So we have reason to believe that the grammar is LL(1). To be really
sure, however, we would need to construct the LL(1) table. In doing so, we see there
are no conflicts, so the grammar is LL(1).

d) (5p)

LR parsing sequence with stack • input ; action in each step

• ID "(" ID "," ID ")" $; SHIFT

ID • "(" ID "," ID ")" $; SHIFT

ID "(" • ID "," ID ")" $; SHIFT

ID "(" ID • "," ID ")" $; REDUCE E → ID

ID "(" E • "," ID ")" $; SHIFT

ID "(" E "," • ID ")" $; SHIFT

ID "(" E "," ID • ")" $; REDUCE E → ID

ID "(" E "," E • ")" $; REDUCE RL → ε
ID "(" E "," E RL • ")" $; REDUCE RL → "," E RL

ID "(" E RL • ")" $; REDUCE EL → E RL

ID "(" EL • ")" $; SHIFT

ID "(" EL ")" • $; REDUCE C → ID "(" EL ")"

C • $; REDUCE S → C

S • $; ACCEPT

4

3 Program analysis

a) (4p)
Implementation of the attributes:

syn Block Program.localLookupBlock(String s) {

for (Block b : getBlockList())

if (b.getBId().equals(s)) return b;

return null;

}

syn Port Block.localLookupPort(String s) {

for (Port p : getPortList())

if (p.getPId().equals(s)) return p;

return null;

}

b) (5p)
Attribute grammar computing PortUse.port():

syn Port PortUse.port(){

if (block() != null)

return block().localLookupPort(getPId());

else

return null;

}

syn Block PortUse.block() = lookupBlock(getBId());

inh Block PortUse.lookupBlock(String s);

eq Program.getConnector().lookupBlock(String s) = localLookupBlock(s);

Here, the equation for PortUse.port can be rewritten to the following more elegant
implementation, using a conditional expression:

syn Port PortUse.port() =

(block() != null) ? block().localLookupPort(getPId()) : null;

There are other possible implementations that would work. For example, an inher-
ited attribute for the Program root could be introduced, to let the PortUse directly
call localLookupBlock. This solution, however, does not follow the lookup pat-
tern, and makes the specification difficult to extend. For example, if we add nested
blocks to the language, such a solution would need to be replaced rather than just
extended.

5

4 Runtime systems

(2p)
A root pointer is a variable on the stack (or in global data) that points to an object
on the heap. The garbage collector uses the root pointers to determine which objects
are live, i.e., the ones reachable (directly or transitively) from a root pointer. The
garbage collector can use this information to reclaim dead areas on the heap (to allocate
new objects there), and for compacting the heap (move the live objects together to a
contiguous area).

6

	Lexical analysis
	Grammars
	Program analysis
	Runtime systems

