
Examination in Compilers, EDAN65

Department of Computer Science, Lund University

2019–10–30, 08.00-13.00

Note! Your exam will be marked only if you have completed all six pro-
gramming lab assignments in advance.

Start each solution (1, 2, 3) on a separate sheet of paper. Write only on one
side of each sheet. Write your personal identifier1 on every sheet of paper.
Write clearly and legibly. Try to find clear, readable solutions with meaningful
names. Unnecessary complexity will result in point reduction.

The following documents may be used during the exam:

• Reference manual for JastAdd2

• x86 Cheat Sheet

You may also use a dictionary from English to your native language.

Max points: 60
For grade 3: Min 30
For grade 4: Min 40
For grade 5: Min 50

1The personal identifier is a short phrase, a code or a brief sentence of your choice. It can be
anything, but not something that can reveal your identity. The purpose of this identifier is to make it
possible for you to identify your exam in case something goes wrong with the anonymous code on the
exam cover (such as if it is confused with another code due to sloppy writing).
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1 Lexical analysis

A language has the following token definitions:

VAR = "var"

VAL = "val"

ID = [a-z]+

The usual disambiguation rules of rule priority and longest match apply to these
definitions.

a) Draw three small finite automata, one for each of the token definitions. Mark the
final state of each automaton with the token in question. (3p)

b) Combine the three automata to an NFA by joining their start states, and mark each
state with a unique number. Mark also the final states with the token in question.

(1p)

c) Construct a DFA that is equivalent to the NFA. Mark each DFA state with the
state numbers from the corresponding states in the NFA. Mark each final state by
the appropriate token. (5p)

d) Consider the following strings: "var", ’"vara", and "val".

First, which tokens do these strings match? Second, for which of the strings is
longest match needed, and what would happen if we didn’t have that rule? Third,
for which of the strings is rule priority needed, and what would happen if we didn’t
have that rule?

(6p)
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2 Grammars

Alice and Bob are implementing a language for boolean function definitions and ex-
pressions. The functions may have optional parameters with default values. Function
call arguments for optional parameters are named. Here is an example program P in
the language:

func f1(x, y, z = true) = f2(x) and (f2(y, b = true) or z);

func f2(a, b = false) = a and not b or not (f3() and not not b);

func f3(c=true) = not c;

func main() = f1(true, false) and f2(true) and f3(c=false);

Alice and Bob start by constructing an abstract grammar for the language:

Program ::= FuncDef*;

FuncDef ::= IdDecl ParamDecl* Exp;

ParamDecl ::= IdDecl [DefaultValue:Exp];

abstract Exp;

OrExp : Exp ::= Left:Exp Right:Exp;

AndExp: Exp ::= Left:Exp Right:Exp;

NotExp : Exp ::= Exp;

TrueExp : Exp;

FalseExp : Exp;

ParExp : Exp ::= Exp;

CallExp : Exp ::= IdUse Arg*;

Arg ::= [IdUse] Exp;

IdDecl ::= <ID:String >;

IdUse : Exp ::= <ID:String >;

The next step is to construct a parsing grammar. Alice and Bob start by writing
down a context-free grammar E for some of the boolean expressions.

exp → exp "or" exp

exp → exp "and" exp

exp → "not" exp

exp → "(" exp ")"

exp → ID
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a) Alice’s and Bob’s first idea is to try to write a recursive-descent parser and they
would therefore like to construct an LL(1) parse table for the grammar E. Help them
by constructing this table.

(4p)

b) Alice and Bob decide that recursive-descent might be too difficult for them, so they
instead try the E grammar on an LALR parser generator. But the generator gives
several error messages, including the following (tokens within square brackets are
lookahead tokens in the LR items):

ERROR: SHIFT/REDUCE conflict:

exp = exp . OR exp [AND]

exp = exp AND exp . [OR]

Help them to understand this problem by writing down an example expression that
would be parsed as two different trees depending on if the shift or reduce action is
taken in the above state. For each of these parse trees, draw the tree, and write
down if shift or reduce was used for the above state.

(6p)

c) Alice and Bob now understand that they have to think about associativity and
priorities for the E grammar. Normal precedence rules apply, so that not has higher
priority than and, and and has higher priority than or. Both and and or should
be left-associative. Help Alice and Bob by constructing an equivalent unambiguous
grammar that supports these precedence rules. The grammar should be on canonical
or BNF form (not EBNF).

(6p)

d) Now, help Alice and Bob by writing the remaining parts of the context-free grammar
so that the example program P can be parsed using LALR parsing. The grammar
should be on canonical or BNF form (not EBNF). Use the same names as in the
abstract grammar when this is relevant. Note that parameter and argument lists
are comma-separated, but that extra commas are not allowed. For example, the
expression p(a, b, ) should not be allowed by the grammar. Don’t forget to add
the expressions that were not covered by grammar E.

(8p)
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3 Program analysis and code generation

a) Recall that the language from problem 2 supports optional parameters with default
values. When declaring a function definition, all ordinary parameters (without de-
fault values) must be declared first, and then all the optional parameters (those with
default values) should follow. It is therefore a static-semantic error if an ordinary
parameter follows an optional parameter like in the following example:

func f(x, y, z = true, u, v, w = false, s, t) = ...

For this case, Alice and Bob would like to print two error messages:

Error at line 1, column 24: ordinary parameter u follows optional parameter

Error at line 1, column 41: ordinary parameter s follows optional parameter

Use reference attribute grammars to implement a boolean attribute ordinaryFollowsOptional()
for ParamDecl, that captures this behavior. I.e., for the above example, the attribute
should be true for u and s, but false for the other parameter declarations.

Note! You may neither use instanceof nor the getParent() method.

(6p)

b) Alice and Bob have implemented an interface Visitor with a method

void visit(C node);

for each class C in the abstract grammar. They have furthermore defined a method
accept in ASTNode, and overridden it for each concrete subclass as follows:

void accept(Visitor v) {

v.visit(this);

}

Then they have implemented a class TraversingVisitor that implements the Visitor
interface and that provides a default implementation of each visit method. Each
such default implementation calls the accept method on each of the children of the
visited node.

Implement a visitor ErrorMessageVisitor that prints the error messages discussed
in problem 3a on a PrintStream such as System.out. The main program should
be able to call the visitor using a static method print as follows:

Program root = ... // Parse in program

ErrorMessageVisitor.print(root, System.out);

You may assume that ASTNode has two int methods getLine() and getCol() to
get the line and column number for the node. You may also use the attribute
ordinaryFollowsOptional from problem 3a.

(6p)
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c) Alice and Bob would also like to generate code for the language.

At runtime, a called function expects all its arguments to be pushed on the stack
by the caller, even if the function call in the source code leaves out some optional
arguments. The calling function thus needs to push the default values for left out
arguments. The called function furthermore expects the arguments to be pushed in
the same (but reversed) order as in the function definition, even if the function call
in the source code lists optional arguments in another order.

For example, consider the following function definition:

func f(x, y, z=true, u=false) = ... ;

The table below shows some example source code calls, and in what order the
arguments should be pushed

// Source code call: // Order in which arguments should be pushed:

f(a, b) // false, true, b, a

f(a, b, z=c) // false, c, b, a

f(a, b, u=d) // d, true, b, a

f(a, b, z=c, u=d) // d, c, b, a

f(a, b, u=c, z=d) // c, d, b, a

In Alice’s and Bob’s code generator, each class in the abstract grammar has a
void method genCode(PrintStream s) for generating x86 64-bit code. They have
already implemented large parts of the code generator. In particular:

• The genCode method has been implemented for all classes, except CallExp.

• For each expression, genCode leaves the result in %rax.

• A called function leaves its result in %rax.

• There is an attribute syn FuncDef CallExp.decl() that can be used to find
the function definition for a call.

• The code generator is called only if there are no static-semantic errors.

• All static-semantic checks are already implemented, including the following:

– The argument list of a call must start with all the ordinary (non-optional)
arguments.

– An ordinary argument is not allowed to be named in the call.

– An optional argument must always be named in the call.

Help Alice and Bob by implementing the genCode method for CallExp. Introduce
more attributes if you need them.

(9p)
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