
EDAN65: Compilers, Exercise set E-13

Problems and Solutions
Görel Hedin

Revised: 2024-10-15



2

A language L is described by following context-free 
grammar:

p1:   E -> E "+" E
p2:   E -> E "*" E
p3:   E -> ID

where E is the start symbol, and ID is a terminal symbol 
representing an identifier. Prove by writing down a left-
most derivation that

   ID "+" ID "*" ID

belongs to L. For each derivation step, show which 
production was used.

E => E "+" E (p1)
   =>   ID "+" E (p3)
   =>   ID "+" E "*" E (p2)
   =>   ID "+" ID "*" E (p3)
   =>   ID "+" ID "*" ID (p3)

Note that this is a left-most derivation since the 
leftmost nonterminal symbol is replaced in each step.

SolutionProblem E13-1
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Consider the following context-free grammar for a textual 
representation of a graph with labelled nodes and edges. The 
start symbol is Graph:

   Graph -> ElementList
   ElementList -> Element ElementList
   ElementList -> ε
   Element -> Node
   Element -> Edge
   Node -> ID
   Edge -> ID "(" ID "->" ID ")"

The terminal ID has the following regular expression definition:
   ID = [a-z]+

Draw the parse tree for the following graph:
   a e(a->b)

Graph

ElementList 

Element 

"("
ID
"a"

ElementList 

Element ElementList 

Node
Edge

ID
"e"

ID
"a" "->"

ID
"b" ")"

Note that:
• the root is labeled by the start symbol
• the terminal symbols are leaves
• each nonterminal has children corresponding to 

the right-hand side of one of its productions (none 
in case of the empty production)

SolutionProblem E13-2
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Problem E13-3

Consider the following context-free grammar for a 
textual representation of a graph with labelled nodes 
and edges. The start symbol is Graph:

p1: Graph -> ElementList
p2: ElementList -> Element ElementList
p3: ElementList -> ε
p4: Element -> Node
p5: Element -> Edge
p6: Node -> ID
p7: Edge -> ID "(" ID "->" ID ")"

This grammar is not LL(1). Explain why.

Solution

The grammar is not LL(1) since the nonterminal 
Element has two productions (p4 and p5) with an 
indirect common prefix (ID).



5

Problem E13-4

The following grammar contains a common prefix. 
Transform the grammar to an equivalent grammar 
where the common prefix is eliminated.

    Graph -> ElementList
    ElementList -> Element ElementList
    ElementList -> ε
    Element -> Node
    Element -> Edge
    Node -> ID
    Edge -> ID "(" ID "->" ID ")"

Solution

Step 1: Substitute the definitions of Node and Edge 
into the Element productions:

    Graph -> ElementList
    ElementList -> Element ElementList
    ElementList -> ε
    Element -> ID
    Element -> ID "(" ID "->" ID ")"

Step 2: Factor out the common prefix by introducing 
a new nonterminal ElementRest:

    Graph -> ElementList
    ElementList -> Element ElementList
    ElementList -> ε
    Element -> ID ElementRest
    ElementRest -> ε
    ElementRest -> "(" ID "->" ID ")"

The common prefix is now eliminated.
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Problem E13-5
The following grammar is left-recursive and therefore 
not LL(1). Transform the grammar to an equivalent 
grammar that is LL(1). Argue for that your resulting 
grammar is LL(1).

    T -> T "*" F
    T -> F
    F -> ID
    F -> "(" T ")"

Solution
Step 1: Replace left recursion with right recursion.

    T -> F "*" T
    T -> F
    F -> ID
    F -> "(" T ")"

Step 2: Eliminate the common prefix

    T     -> F TRest
    TRest -> ε
    TRest -> "*" T
    F     -> ID
    F     -> "(" T ")"

A grammar is LL(1) if the LL(1) parse table is without 
conflicts. The T row cannot have any conflicts since 
T has only one production. The F row clearly has no 
conflicts since the two productions start with 
different tokens.
For TRest, we need to compare FOLLOW of its first 
production (which is {EOF, ")"}) with FIRST of its 
second production (which is {"*"}). Since these sets 
do not overlap, there is no conflict here either. The 
grammar above is therefore LL(1).
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Consider the following context-free grammar for a 
textual representation of a graph with labelled nodes 
and edges. The start symbol is G:

p1: G -> ElemList
p2: ElemList -> Elem ElemList
p3: ElemList -> ε
p4: Elem -> Node
p5: Elem -> Edge
p6: Node -> ID
p7: Edge -> ID "(" ID "->" ID ")"

The terminal ID has the following regular expression 
definition:
   ID = [a-z]+

Show how an LR parser would parsing the following 
program:
   a e(a->b)
Show the stack contents, the remaining input, and the 
parsing action taken in each step.

Problem E13-6 Solution
To the left, the stack and remaining input is shown, 
separated by an asterisk.
To the right, the next action is shown.
We consider the tokenized input:

ID ID ( ID -> ID )

The LR parse is then:

* ID ID ( ID -> ID ) shift ID
ID * ID ( ID -> ID ) reduce p6
Node * ID ( ID -> ID ) reduce p4
Elem * ID ( ID -> ID ) shift ID
Elem ID * ( ID -> ID ) shift (
Elem ID ( * ID -> ID ) shift ID
Elem ID ( ID * -> ID ) shift ->
Elem ID ( ID -> * ID ) shift ID
Elem ID ( ID -> ID * ) shift )
Elem ID ( ID -> ID ) * reduce p7
Elem Edge * reduce p5
Elem Elem * reduce p3
Elem Elem ElemList * reduce p2
Elem ElemList * reduce p2
ElemList * reduce p1
G * accept
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Consider the following abstract grammar for a graph of 
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

Suppose there is an attribute
   Node NodeUse.maybeNode()
that refers to the node of the same name as the 
NodeUse, or to null if there is no such node.

Define a boolean synthesized attribute wellFormed() for 
Edge nodes, that is true iff both its source and 
destination nodes exist.

Problem E13-7 Solution
Implement Edge.wellFormed(). Discover that a helper 
attribute NodeUse.wellFormed() would be convenient:

syn boolean Edge.wellFormed() =
  getSrc().wellFormed() & 
  getDst().wellFormed();

Implement NodeUse.wellFormed():

syn boolean NodeUse.wellFormed() =
  maybeNode()!=null;
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Consider the following abstract grammar for a graph of 
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

Suppose there is an attribute
   Node NodeUse.maybeNode()
that refers to the node of the same name as the 
NodeUse, or to null if there is no such node.

To represent missing nodes, introduce a new AST class 
UnknownNode, and create an object of this class as an 
NTA of the root.

Define a new attribute
   Node NodeUse.node()
that refers to the UnknownNode object instead of to null.

Problem E13-8 Solution
The new class is

  UnknownNode:Node;

The NTA:

  syn nta UnknownNode G.unknown() =
    new UnknownNode("Unknown");

Propagation of the UnknownNode object downwards in 
the AST:

  inh UnknownNode NodeUse.theUnknown();
  eq G.getElement().theUnknown() = 
    unknown();

Definition of node():

  syn Node NodeUse.node() {
    if (maybeNode()==null)
      return theUnknown();
    else
      return maybeNode();
  }
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Consider the following abstract grammar for a graph of 
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

Implement an attribute
   Node NodeUse.maybeNode()
that refers to the node of the same name as the 
NodeUse, or to null if there is no such node.

Problem E13-9 Solution
Implement the attribute. Discover that it would be 
convenient with a helper attribute lookup:

syn Node NodeUse.maybeNode() = 
  lookup(getID());

Implement the lookup attribute. Discover that another 
helper attribute localLookup would be convenient.

inh Node NodeUse.lookup(String s);
eq G.getElement().lookup(String s) {
  for (Element e : getElementList()) {
    Node n = e.localLookup(s);
    if (n != null) return n;
  }
  return null;
}

Implement localLookup as well.

syn Node Element.localLookup(String s) = 
  null;
eq Node.localLookup(String s) {
  if (s.equals(getID())) return this;
  return null;
}
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Consider the following abstract grammar for a graph of 
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= src:NodeUse dst:NodeUse;
NodeUse ::= <ID>;

Define an attribute
  int G.nbrOfEdges()
that counts the number of edges in the graph. Use a 
collection attribute to compute the attribute. You can use 
a class Counter with the following implementation:

public class Counter {
  private int count = 0;
  public void add(int n) {
    count = count + n;
  }
  public int count() {
    return count;
  }
}

Problem E13-10 Solution
Declare the collection:

  coll Counter G.edgeCount()
       [new Counter()] with add;

Let each Edge contribute 1 to the counter:

  Edge contributes 1
  to G.edgeCount()
  for theGraph();

Propagation of a reference to the graph to all edges:

  inh G Edge.theGraph();
  eq G.getElement().theGraph() = this;

Define G.nbrOfEdges:

  syn int G.nbrOfEdges() = 
    edgeCount().count();
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Consider the following abstract grammar for a graph of 
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= src:NodeUse dst:NodeUse;
NodeUse ::= <ID>;

Suppose there is an attribute
   Node NodeUse.maybeNode()
that refers to the node of the same name as the 
NodeUse, or to null if there is no such node.

If there is an edge a->b, we say that the node b is a target 
of a. Implement a collection attribute Node.targets() 
containing all the target nodes for a given node.

For sets, you may use the Java type HashSet.

Problem E13-11 Solution
Declare the collection attribute

  coll HashSet<Node> Node.targets()
       [new HashSet<Node>()] with add;

Each Edge contributes its target node to the source 
node's target set (if the dst and src nodes exist).

  Edge contributes getDst().maybeNode()
  when getDst().maybeNode() != null &
       getSrc().maybeNode() != null
  to Node.targets()
  for getSrc().maybeNode();



13

Consider the following abstract grammar for a graph of 
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

If there is an edge a->b, we say that the node b is a target 
of a. Suppose there is a collection attribute
  Set<Node> Node.targets()
containing all the target nodes for a given node.

The reachable set of a node is the transitive set of target 
nodes. Implement the reachable set as a circular 
attribute. You can use the Java class HashSet with 
operations add and addAll, for adding one element or a 
set of elements.

Problem E13-12 Solution

  syn Set<Node> Node.reachable() 
      circular [new HashSet<Node>()] {
      HashSet<Node> s =
        new HashSet<Node>();
      for (Node t : targets()) {
        s.add(t);
        s.addAll(t.reachable());
      }
      return s;
  }



14

class Account {
  int balance = 0;
  void deposit(int amount) {
    balance = balance + amount;
  }
  void withdraw(int amount) {
    if (amount > balance)
      overdraft(amount – balance);
    else
      balance = balance – amount;
  }
  void overdraft(int am) {
    /* PC */
    System.out.println
      ("Overdraft with amount "+am);
  }
}
void test() {
  Account a = new Account();
  a.deposit(100);
  a.withdraw(150);
}

Suppose that test() is called. Draw the situation on the stack 
and heap at /* PC */. Your sketch should include dynamic 
link, fields, local variables, "this" pointer, and arguments 
including their values. Arguments should be passed on the 
stack. Explain the contents of the withdraw activation.

Problem E13-13 Solution

retaddr
this
150

a
dynlink

stack

class
balance=100

heap

retaddr
this
50

dynlink

test

dynlink

withdraw

overdraft

The withdraw activation contains:
• the dynamic link (pointer to previous activation)
• the argument to overdraft (50 in this case)
• the static link ("this") for the overdraft method, i.e., 

the Account object (viewed as argument 0).
• the return address, i.e., the point in the withdraw 

code to  which the overdraft method should return.
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class Figure {
  int area() { return 0; }
}
class Rectangle extends Figure {
  int w;
  int h;
  void set(int w, int h) {
    this.w = w;
    this.h = h;
  }
  int area() {
    return w * h;
  }
  ...
}

Suppose this language is implemented using virtual 
tables. Draw a sketch over the memory showing a 
Rectangle object, its class descriptor, and its code. Your 
sketch should include fields, class link, virtual table, and 
methods.

Problem E13-14 Solution

class
w
h

heap

super
area
set

class
descriptors

Figure-area:

code

Rectangle-area:

Rectangle-set:
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class Figure {
  int area() { return 0; }
}
class Rectangle extends Figure {
  int w;
  int h;
  void set(int w, int h) {
    this.w = w;
    this.h = h;
  }
  int area() {
    return w * h;
  }
  ...
}
void m(Figure f) {
  int a;
  a = f.area(); // S
}

This language is implemented using virtual tables. Draw 
the situation on stack and heap at statement S, right 
before the call to f.area() is made. Assume f is a Rectangle 
object and include the class descriptor in your sketch. 
Sketch the code for the statement S. Use x86 instructions 
according to the assignment 6 cheatsheet. Add 
comments to the code, explaining what it does. 

Problem E13-15 Solution

class
w
h

heap

super
area
set

class
descr.

Figure-area:

code

Rectangle-area:

Rectangle-set:

pushq 16(%rbp) # push "this" arg (f)
movq 16(%rbp), %rax # f -> rax
movq (%rax), %rax # class -> rax
callq 8(%rax) # call area
popq # pop "this" arg
movq %rax -8(%rbp) # return val -> a

this
a

dynlink

stack

m-activation

retaddr
f

rbp


