
LTH | 3 October 2023

Julius Gustavsson, Volvo Cars | julius.gustavsson@volvocars.com

Why Automotive Software needs more Rust

In a world where vehicles are
defined by software, the old tools

just won’t cut it.

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

whoami

Julius Gustavsson

System Architect and Team Lead @ Volvo Cars - CSP

~ 20 Years of software development

• Worked in

• Avionics

• Telecom

• Consumer Electronics

• Automotive

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Disclaimer:

These are mostly my personal thoughs and opinions and
should not be seen as an official Volvo Cars position

C/C++ is without a doubt the de facto standard for
systems programming, going back decades.

But…

In every project I have worked on there were these
obscure errors that never seem to go away, no matter

the level of carefulness and scrutiny

Systems Programming with C/C++

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

”With undefined behavior, anything is possible!”
 - Raph Lavien

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Maybe you read it like this?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Or perhaps like this?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

#include <stdio.h>

int main(int argc, char **argv) {
(void)argc;
(void)argv;
unsigned long a[1];
a[3] = 0x7ffff7a2e194UL;
printf("%p\n", (void*)a);
return 0;

}

$ gcc -g -Wall -Wpedantic -Wextra -o test_c
test.c

$ echo $?

0

$./test_c
0x7fff9cdc9990 test_c: iconv.c:91: iconv:
Assertion `!"Nothing like this should
happen"' failed. [1] 29794 abort (core
dumped) ./test_c

Spot the error

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

#include <iostream>
#include <vector>
#include <string>

int main () {

std::vector<std::string> v;
v.push_back("Is");
std::string &tmp = v[0];
v.push_back("this");
v.push_back("OK?");
std::cout << tmp << '\n'; return 0;

}

$ g++ -g -Wall -Wpedantic -Wextra -o test_cpp
test.cpp

$ echo $?
0

./test_cpp [1] 17543 segmentation fault (core
dumped) ./test_cpp

Spot the error (2)

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

int process_heartbeat(SSL* ssl) {

short int len = 0;
char* inbuf = NULL;
char* outbuf = NULL;

len = SSL_read(ssl, &inbuf);
if (inbuf == NULL) {

return -1;
}

len = inbuf[0] << 8 | inbuf[1];
inbuf += 2;
outbuf = malloc(len + 2 + 1);

if (outbuf == NULL) {
return -1;

}

outbuf[0] = HEARTBEAT_RESP;
outbuf[1] = inbuf[0];
outbuf[2] = inbuf[1];

memcpy(outbuf + 3, inbuf + 2, len);

free(inbuf);

return SSL_write(ssl, &outbuf, len);
}

This is a highly simplified version of the famous SSL
“Heartbleed” vulnerability.

The “Heartbeat Request” message contains a two byte length
field followed by that many bytes of payload.

The server then creates a “Heartbeat Response” message by
copying payload and sending it back

What happens when the length field lies?

Spot the error (3)

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

But this is not an issue if you Know
What you are doing!

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Memory Safety Related CVEs in Microsoft Products

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Memory Safety Related CVEs in Google Chrome

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

And they are increasing over time

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

”Memory issues in software comprise a large portion of the exploitable vulnerabilities in existence. NSA advises
organizations to consider making a strategic shift from programming languages that provide little or no inherent memory

protection, such as C/C++, to a memory safe language when possible.”

- NSA | Cybersecurity Information Sheet

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

”One key recommendation the US government is now advocating is that software developers ditch memory unsafe
programming languages, such as C and C++, because they are the “leading cause of the world’s software

vulnerabilities”.”

- The White House Cyber Security Chief | State of Open Source Conference

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://techinformed.com/switch-to-memory-safe-coding-white-house-cybersec-chief-urges-oss-developers/

”Roughly 60 to 70 percent of browser and kernel vulnerabilities—and security bugs found in
C/C++ code bases—are due to memory unsafety, many of which can be solved by using

memory-safe languages. While developers using memory-unsafe languages can attempt to
avoid all the pitfalls of these languages, this is a losing battle, as experience has shown that

individual expertise is no match for a systemic problem. Even when organizations put significant
effort and resources into detecting, fixing, and mitigating this class of bugs, memory unsafety

continues to represent the majority of high-severity security vulnerabilities and stability issues. It
is important to work not only on improving detection of memory bugs but to ramp up efforts to

prevent them in the first place.”

- Consumer Reports | Future of Memory Safety

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://advocacy.consumerreports.org/wp-content/uploads/2023/01/Memory-Safety-Convening-Report-1-1.pdf

ISO 26262 (the main automotive functional safety standard) emphasizes the use of state of the art with regards to
technical solutions to achieve the objective of the standard.

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

ISO 26262 (the main automotive functional safety standard) emphasizes the use of state of the art with regards to
technical solutions to achieve the objective of the standard.

Can we still claim that C/C++ is state of the art?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

If we want to overcome these issues we need to start considering other tools

Conclusion

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Where are we now and how did we get here?

Automotive Software at Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

It all started in 1927 with Volvo ÖV4 (Jakob)

Headlights

Taillights

Battery

Horn

* Courtesy of Martin Hiller@ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

0

40

60

80

100

120

140

1995 20252000 2005 2010 2015 2020

20

N
o

of
E

C
U

s

160

180

Growth: ~4-5 ECUs/year

E/E architecture evolution at Volvo Cars (1/4)
S

8
0

/P
2

 (1
9

)

V
4

0
/P

1
(4

9
)

S
8

0
/E

U
C

D
 (6

8
)

V
6

0
 P

H
E

V
/E

U
C

D
 (7

8
)

X
C

9
0

/S
P

A
 (1

0
8

)

X
C

9
0

/P
2

 (3
8

)
200

S
P

A
2

 (e
st

. ~
15

0
)

”S
P

A
3

”
(e

st
. ~

10
0

)
w

/
fu

ll
E

C
U

 in
te

gr
at

io
n

Number of ECUs

* Courtesy of Martin Hiller@ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

E/E architecture evolution at Volvo Cars (2/4)

0

200

300

400

500

600

700

1995 20252000 2005 2010 2015 2020

100

M
eg

ab
yt

es
 d

ow
nl

oa
da

bl
e

so
ft

w
ar

e

800

900

Speech and maps not included

Growth: ~10x every 5-7 years

Maps not included

S
8

0
 (1

.5
)

X
C

9
0

 (4
.9

)

S
8

0
 (1

0
.9

)

V
70

 (1
8

.6
)

V
4

0
 (9

7.
0

)

X
C

9
0

 (9
17

.0
)

X
C

6
0

 (2
0

.6
)

V
6

0
 (1

17
.5

)

S
P

A
2

 (e
st

. 1
5

 0
0

0
)

”S
P

A
3

”
(e

st
. 1

5
0

 0
0

0
)

SW size

* Courtesy of Martin Hiller@ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

E/E architecture evolution at Volvo Cars (3/4)

0

4 000

6 000

8 000

10 000

12 000

14 000

P2 (1998-2014) EUCD (2006-2018) SPA (2015-ongoing) SPA2 (prototype)

2 000

N
um

be
r

of
bu

s
si

gn
al

s

16 000

18 000

Growth: ~2-3x every 5-7 years

10
0

’s
, l

ow
10

0
0

’s

~
2

 7
0

0

~
7

0
0

0

~
14

 0
0

0

Number of bus signals

* Courtesy of Martin Hiller@ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

E/E architecture evolution at Volvo Cars (4/4)

0

10

15

20

25

30

35

P2 (???) EUCD (Y413) SPA (V526) SPA2 (estimate)

5

kg

40

45

~
10

.5 ~
14

.5

~
3

6

~
4

2

”SPA3” (estimate)

~
2

8

Cable harness weight

* Courtesy of Martin Hiller@ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Where do we go from here?

* Courtesy of Martin Hiller @ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Two (+ one) main parts to the future E/E Architecture

Infotainment
System

Vehicle Control &
Connections

System

& &

Self Driving
System

* Courtesy of Martin Hiller @ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Step 1: Centralisation Ethernet

CAN/CAN FD

Lin
Integrating domain masters and other compute heavy ECUs into one central computer

Sensors
and

actuators

VCUDHU

VIU
Passenger

ADPM

VIU
Driver

Low Power
Controller

ECU

VIU
Front

An ECU in the Mechatronic Rim is highly specialised for
controlling its specific device. For example: engine,

transmission, brakes, steering, doors, windows, seats, ...

The VCU coordinates fundamental capabilities in the Mechatronic Rim
to provide vehicle level behavior. For example: vehicle dynamics,

propulsion control, climate control, exterior lighting, interior lighting, ...

A VIU provides a translation from the specific
network interfaces of the nodes in the Mechatronic

Rim to the Core Network. Think ”Gateway”...

* Courtesy of Martin Hiller @ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

CAN/CAN FD

Lin

VCU

Right Front
Door ECU

Right Rear
Door ECU

Left Front
Door ECU Left Rear

Door ECU

Roof ECU

Tunnel ECU

UXC

Right
ZC

Tail
IOC

Left
ZC

Step 2: Integration
Integrating VIUs, power distribution and mechatronic ECUs into zone controllers

Ethernet

ADPM

The VCU and ADPM end up in the
same physical box.

A Zone Controller integrates most/many sensors and actuators
in a specific zone in the car, and provides gatewaying (if

necessary), power distribution and direct I/O control.

The DHU and AUD are
integrated into the UXC.

* Courtesy of Martin Hiller @ Volvo Cars

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Functional area
Expected

growth
CPU GPU NPU ISP etc.

Other/
comments

Network acc? Up
to 50k packets/s

coming into a core
computer not too

unrealistic

Assisted by vision?
For example,

viewing the road
surface…

AI/ML will surely
come in here as

well…

These guys are
greedy… 500-
1000 TOPS for

“complete” stack

“Democratized”
sensor data

enables lots of cool
new features…

Computational needs – overview

Communication
(internal & external)

v

x y

z

mg
FD

FR FX

rW
Traditional functions

Infotainment & HMI

ADAS & Autonomy

?Other & unknown ?

Software is a gas. Software always expands
to fit whatever container it is stored in.

- Nathan Myhrvold’s 1st law of software

+

++ ++ ++

??

+++ +++ ++++++

?? ? ?

+

* Courtesy of Martin Hiller @ Volvo Cars Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Safety vs Security

Safety (as in personal safety)

• We need to ensure that our products are safe to use

• Hazard scenarios are identified and possible
mitigations are put in place through various processes
and methods

• C/C++ code is developed using a substantially limited
subsets of the languages in an attempt only express
well defined behavior

• The systems are extensively tested (using both formal
and informal methods) to ensure that they behave as
expected in all scenarios

• Once a system is safety certified, modifications are
avoided as much as possible due to cost

Security (as in cyber security)

• We also need to ensure our products are safe from
hacking

• Threat scenarios are identified and possible mitigation
are put in place through various processes and
methods

• C/C++ code is developed according to strict security
guidelines in an attempt to minimize attack surface

• The systems are extensively tested (using both formal
and informal methods) to ensure that they behave as
expected in all scenarios

• A secure system is an update-to-date system where
any identified vulnerabilites are patched.

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

The traditional tools and methods used by the automotive industry up until
now are highly likely to be sub-optimal for tackling these new growth areas

while maintaining or preferably increasing productivity.

Here we also should consider looking into new tool alternatives.

Conclusion

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

The biggest improvement of the status quo during my career

Now let’s talk about Rust

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

fn main() {
let mut a = [0u64; 1];
a[3] = 0x7ffff7a2e194u64;
println!("{:p}", &a);

}

$ rustc -g -o test1 test1.rs

warning: this expression will panic at run-
time
--> test1.rs:3:5 0|
3 | a[3] = 0x7ffff7a2e194u64;
0 | ^^^^ index out of bounds: the len is 1

but the index is 3

$./test1
thread 'main' panicked at
'index out of bounds: the len is 1 but the
index is 3', test1.rs:3:5
note: Run with `RUST_BACKTRACE=1` for a
backtrace.

How does Rust fare?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

fn main() {
let mut v = Vec::new();
v.push("Is");
let tmp = &v[0];

v.push("this");
v.push("Ok");
println!("{}", tmp);

}

$ rustc -g -o test2 test2.rs

error[E0502]: cannot borrow `v` as mutable
because it is also borrowed as immutable
--> test2.rs:7:5

0 |
5 | let tmp = &v[0];
0 | - immutable borrow occurs
here

6 |
7 | v.push("You");
0 | ^ mutable borrow occurs here
...
11| }

| - immutable borrow ends here

How does Rust fare?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

What does Rust bring to the table?
• Safe by default

Ø Eliminates an entire class of bugs

• Automatic memory management without GC

Ø Works just as well with or without an OS

• Can communicate with C/C++ with little or no
overhead

Ø No need to rewrite everything. Focus on the things
that gives value

• Possibility to “bypass” some of the compiler checks
by using the unsafe keyword

Ø Unsafe code is clearly marked and easy to audit

• Combines the best concepts from both imperative and
functional languages into a compelling package

Ø Brings various interesting patterns into the systems
domain

• A powerful static type system

Ø Invariants and beviour can be enforced at compile time

Ø Thread-safety is completely solved on type level!

• Tests are first class citizens and world class tooling at your
fingertips

Ø Lowers the barrier to modern DevSecOps practices

• Vibrant open-source community that produces some of
the best-in-class third-party components out there

Ø Composable high quality components that can
significantly reduce development time

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Rust has the potential to combine the two in a unique way:

The powerful type system can be used to encode various safety and security
invariants that the compiler will enforce at compile time

Ø Changes and refactoring can be done with confidence because the
compiler will have your back if you slip up

Ø Re-certification should become a simpler and cheaper process

Correctness up front at lower cost/effort

Ø Less need for hotfix updates

Ø When a hotfix is needed, it should be easier to ensure that all safety
invariants are still upheld

How does that apply to Safety & Security?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

How should we adopt Rust in a large legacy codebase?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

” In Android 13, about 21% of all new
native code (C/C++/Rust) is in Rust.
There are approximately 1.5 million
total lines of Rust code in AOSP”

…

“To date, there have been zero
memory safety vulnerabilities
discovered in Android’s Rust code.”

- Google Security Blog

Focus on new code rather than rewrites

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

“While correlation doesn’t
necessarily mean causation, it’s
interesting to note that the percent
of vulnerabilities caused by memory
safety issues seems to correlate
rather closely with the development
language that’s used for new code.”

- Google Security Blog

The Android vulnerability trend is finally broken!

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

”Rust has an ownership model that guarantees both memory safety and thread safety, at compile-time, without requiring
a garbage collector. This allows users to write high-performance code while eliminating many bug classes. Though Rust

does have an unsafe mode, its use is explicit, and only a narrow scope of actions is allowed. (14 Mar 2023)”

- NIST | Software Quality Group - Safer Languages

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://www.nist.gov/itl/ssd/software-quality-group/safer-languages

How are we currently using Rust at Volvo Cars?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

The VCU Low-Power Domain Ethernet

CAN/CAN FD

Lin

Sensors
and

actuators

VCUDHU

VIU
Passenger

ADPM

VIU
Driver

Low Power
Controller

ECU

VIU
Front

VCU

VCU

Security
Gateway

High
Integrity

High
Performance

Low
Power

High
Integrity

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

• Always-on
Ø Low power consumption is super important

• Powers on the VCU based on different criteria

Ø Robustness is key! We want the car to always turn on when it should
and never when it shouldn’t

• Facilitates communication between different subsystems during sleep

Ø Real-time characteristics

• Can only power the system on and not off

Ø Not safety critical

• Limited functional scope

Ø Suitable for a small team. Perfect as a test bed for Rust!

Functionality

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

• 100% Pure Rust Application based on RTIC

• HW drivers developed by Grepit AB in collaboration with the atsamd HAL
project

• Custom development boards (also developed by Grepit AB) allows us to
test our firmware to almost 100% before deploying it on the VCU

• A fully automated CI/CD pipeline based on Zuul CI where each code
change is extensively tested on our custom hardware before being
promoted to higher level testing on the VCU hardware

Implementation

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://rtic.rs/
https://github.com/atsamd-rs
https://zuul-ci.org/

Reflections so far
• Enormous productivity boost!

Ø The combination of the Rust language, Cargo build
system/pkg manager, and vibrant third party eco system
is really a “1 + 1 + 1 = 5” proposition

• The so called “steep learning curve” has not turned out be
a real issue

Ø But make sure the team has access to Rust experts to
avoid getting stuck

Ø On the contrary, on-boarding new people on the team
has been easier than before

Ø The language and tools enables newcomers to ”dive-
into” new unfamiliar code-bases without fear

• The in-flow of error reports seems to be much lower

Ø Still too early to tell, but the long tail of quality issues is
still no where to be seen

• Memory footprint and performance is on par or better
than C/C++

Ø Binary size tends to be larger though

• The available tooling integrates seamlessly with cargo

Ø Huge productivity boost!

Ø But there are also gaps in the available tooling

• Instead of asking: “Should we use Rust for this?”

• Ask: “Is there a valid reason not to use Rust for this?”

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

But is that the whole story?

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

It’s not a panacea

• It is a powerful but also rather complex language

Ø A number of novel concepts you need to understand
before you can become productive

• Let the compiler guide you, otherwise you’re in for a
treat!

Ø You may have to un-learn various unsafe practices
that you get away with in other languages

• Although the over all lead-time to a fully working
product is shorter, initial progress can be slower

Ø Before your program even compiles you are forced
to think through the implications of your design
choices

• Third-party eco system is still young and incomplete
in many areas (particularly automotive)

Ø Either an obstacle or an opportunity depending how
you look at it

• Platform support is still early on many automotive
platforms although rapidly improving (e.g. QNX and
Infineon Aurix support added during 2023)

• Not yet qualified for safety critical applications
according to automotive standards

Ø Important work being done the Ferrocene project
§ Certification from TÜV expected within days!

Ø AUTOSAR and SAE have both started Rust work
groups

Ø 2023 H2 will most likely be huge milestone

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

https://ferrous-systems.com/ferrocene/
https://www.autosar.org/news-events/details/autosar-investigates-how-the-programming-language-rust-could-be-applied-in-adaptive-platform-context/
https://www.sae.org/standards/content/ja1020/

”Want to increase innovation? Lower the cost of failure!”
 - Joichi Ito

Why Automotive Software Needs More Rust, Julius Gustavsson, Security Class: Public

Thank You!

Questions?

