
EDAN65: Compilers, Lecture 12

Runtime systems for
object-oriented languages

Görel Hedin
Revised: 2023-10-02

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Some influential OO languages

3

SIMULA

Smalltalk

C++

via Objective-C

Java

Self

1970 1980 1990 2000

Dynamic compilation

dynamic typing

static typing

Some influential OO languages

4

SIMULA

Smalltalk

C++

via Objective-C

Java

Self

1970 1980 1990 2000

Dynamic compilation

dynamic typing

static typing

Type
A type is a set of values or objects
At runtime, every object has a type (the class used for creating the object).

Dynamic typing
There are no types for things at compile-time. Only for objects at runtime.

Static typing
Variables have types at compile-time.
At runtime, the variable points to an object of at least that type (that type, or a subtype).

Example memory segments

5

stack

heap

code (read only)

global data

activation
frames

objects

Typical memory usage for OO languages

6

activation frame –
data for a method instance

frames

code

objects

objects –
data for a class instance

global dataglobal data –
class descriptors, etc.

code –
methods, constructors, etc.

stack

heap

Typical memory usage for OO languages

7

activation frame –
data for a method instance

frames

code

objects

Dedicated registers:

FP – Frame Pointer (start of current activation frame)
SP – Stack Pointer (top of stack)

PC – Program counter. The currently executing instruction.

HP – Heap Pointer (where to allocate next object)

objects –
data for a class instance

global dataglobal data –
class descriptors, etc.

code –
methods, constructors, etc.

Dynamic class loading (like in Java):
Class descriptors and JIT-compiled bytecode placed on the heap instead of in the data/code segments.
(The code for the jvm itself is placed in the code segment)

stack

heap
Typical initial heap size: 256 MB
(1/64 of available RAM – 256 MB on a 16GB machine).
Typical max heap size: 4 GB
(¼ of available RAM. E.g., 4 GB on a 16GB machine.

Typical stack size (Java): 1 MB

Handling threads

8

code

objects

FP – Frame Pointer for current thread
SP – Stack Pointer for current thread

PC – Program counter for current thread

Heap, globals
and code shared
by all threads

global data

frames
t1

heap

framest2

frames
t3

1 stack per thread

Handling threads

9

code

objects

FP – Frame Pointer for current thread
SP – Stack Pointer for current thread

PC – Program counter for current thread

Heap, globals
and code shared
by all threads

global data

Operating-system threads:
Used by Java, C, ..., typically expensive:
- Interrupt-driven context switch at any point during
execution: Store/restore all registers on/from stack
- Constant stack size of 1 MB limits the number of threads
- 1000 threads = 1 GB RAM.

frames
t1

heap

framest2

frames
t3

1 stack per thread

User-level threads:
Used by some languages, like Go, more light-weight:
- Cooperative context switch only at well-defined points:
Sufficient to store/restore a few registers.
- Stacks can start small (2 KB) and grow at runtime.
- Can handle millions of threads.
- Cannot take advantage of multi-core

The heap

10

stack heap

pointer

Live objects are those
reachable from root pointers.

Dead objects can be garbage
collected.

Fragmentation: unused
memory inside the heap

L live object

dead objectD

L

L

L

L

L

root pointer

D

D

1

2

3

4

5

6

7

Major garbage collection techniques

11

Major garbage collection techniques

12

Mark-sweep GC: Follow all pointers and mark all live objects.
Sweep heap and collect free objects. Or compact the heap to avoid fragmentation.

Major garbage collection techniques

13

Mark-sweep GC: Follow all pointers and mark all live objects.
Sweep heap and collect free objects. Or compact the heap to avoid fragmentation.

Copying GC: Divide heap into two spaces. Allocate new objects in from-space.
When full, move all live objects to to-space. Flip from-space and to-space.

from-space to-space

Major garbage collection techniques

14

Mark-sweep GC: Follow all pointers and mark all live objects.
Sweep heap and collect free objects. Or compact the heap to avoid fragmentation.

Generational GC: Efficient because most objects die young.
Move (tenure) surviving objects to older generation.

Old generation – large – collect seldom
typically mark-sweep GC

New generation – small – collect often
typically copying GC

Copying GC: Divide heap into two spaces. Allocate new objects in from-space.
When full, move all live objects to to-space. Flip from-space and to-space.

from-space to-space

Major garbage collection techniques

15

Mark-sweep GC: Follow all pointers and mark all live objects.
Sweep heap and collect free objects. Or compact the heap to avoid fragmentation.

Generational GC: Efficient because most objects die young.
Move (tenure) surviving objects to older generation.

Old generation – large – collect seldom
typically mark-sweep GC

New generation – small – collect often
typically copying GC

Reference counting: Inefficient (overhead when reading and writing references).
Deallocate when count=0. Does not handle cycles. Fragmentation problems.

Copying GC: Divide heap into two spaces. Allocate new objects in from-space.
When full, move all live objects to to-space. Flip from-space and to-space.

from-space to-space

Mark-Sweep GC

16

Mark-Sweep-Compact GC

17

1. The program starts. The heap is empty.HP

Mark-Sweep-Compact GC

18

1. The program starts. The heap is empty.HP

2. The program runs and allocates new objects until the heap is full. Program stops. HP

Mark-Sweep-Compact GC

19

1. The program starts. The heap is empty.HP

2. The program runs and allocates new objects until the heap is full. Program stops. HP

L L L L LL L

3. Mark phase: The GC follows pointers from the roots and marks all live objects. HP

Mark-Sweep-Compact GC

20

1. The program starts. The heap is empty.HP

2. The program runs and allocates new objects until the heap is full. Program stops. HP

L L L L LL L

3. Mark phase: The GC follows pointers from the roots and marks all live objects. HP

L L L L LL L

4. Sweep and compact phase: The GC scans the heap to compact live objects. HP

Mark-Sweep-Compact GC

21

1. The program starts. The heap is empty.HP

2. The program runs and allocates new objects until the heap is full. Program stops. HP

L L L L LL L

3. Mark phase: The GC follows pointers from the roots and marks all live objects. HP

L L L L LL L

4. Sweep and compact phase: The GC scans the heap to compact live objects. HP

L L L L LL L

5. The program continues to run. HP

Mark-Sweep-Compact GC

22

+ Avoids fragmentation.
- Long pause at GC ("stop the world")

1. The program starts. The heap is empty.HP

2. The program runs and allocates new objects until the heap is full. Program stops. HP

L L L L LL L

3. Mark phase: The GC follows pointers from the roots and marks all live objects. HP

L L L L LL L

4. Sweep and compact phase: The GC scans the heap to compact live objects. HP

L L L L LL L

5. The program continues to run. HP

Copying GC

23

Copying GC

24

1. The heap is split in two spaces. The program starts. Allocates objects in from-space.

HP
from-space to-space

Copying GC

25

1. The heap is split in two spaces. The program starts. Allocates objects in from-space.

HP
from-space to-space

2. The program runs until from-space is full.

HP
from-space to-space

Copying GC

26

1. The heap is split in two spaces. The program starts. Allocates objects in from-space.

HP
from-space to-space

2. The program runs until from-space is full.

HP
from-space to-space

3. The GC follows pointers from the roots and copies live objects to to-space.

from-space to-space
L L L L L L L L

HP

Copying GC

27

1. The heap is split in two spaces. The program starts. Allocates objects in from-space.

HP
from-space to-space

2. The program runs until from-space is full.

HP
from-space to-space

3. The GC follows pointers from the roots and copies live objects to to-space.

from-space to-space
L L L L L L L L

HP

4. Flip to-space and from-space

to-space from-space
L L L L

HP

Copying GC

28

1. The heap is split in two spaces. The program starts. Allocates objects in from-space.

HP
from-space to-space

2. The program runs until from-space is full.

HP
from-space to-space

3. The GC follows pointers from the roots and copies live objects to to-space.

from-space to-space
L L L L L L L L

HP

4. Flip to-space and from-space

to-space from-space
L L L L

HP

5. The program continues to run, allocating new objects in from-space.

to-space from-space
L L L L

HP

Copying GC

29
+ Efficient – looks only at live objects (which are few). Avoids fragmentation.
- Fairly long pauses at GC ("stop the world"). Uses twice the amout of memory.

1. The heap is split in two spaces. The program starts. Allocates objects in from-space.

HP
from-space to-space

2. The program runs until from-space is full.

HP
from-space to-space

3. The GC follows pointers from the roots and copies live objects to to-space.

from-space to-space
L L L L L L L L

HP

4. Flip to-space and from-space

to-space from-space
L L L L

HP

5. The program continues to run, allocating new objects in from-space.

to-space from-space
L L L L

HP

Generational GC

30

Generational GC

31

1. The heap is split into a large old and a small new generation.

old generation new generation

Generational GC

32

1. The heap is split into a large old and a small new generation.

old generation new generation

2. Typical algorithms.

old generation, mark-sweep new generation,
copying

from-space to-space

Generational GC

33

1. The heap is split into a large old and a small new generation.

old generation new generation

3. The program runs, allocating objects in from-space in new gen.

old generation new generation

from-space to-space

2. Typical algorithms.

old generation, mark-sweep new generation,
copying

from-space to-space

Generational GC

34

1. The heap is split into a large old and a small new generation.

old generation new generation

3. The program runs, allocating objects in from-space in new gen.

old generation new generation

from-space to-space

4. Objects surviving a few GCs in new gen are tenured – moved to old

old generation new generation

from-space to-space

2. Typical algorithms.

old generation, mark-sweep new generation,
copying

from-space to-space

Generational GC

35

1. The heap is split into a large old and a small new generation.

old generation new generation

3. The program runs, allocating objects in from-space in new gen.

old generation new generation

from-space to-space

4. Objects surviving a few GCs in new gen are tenured – moved to old

old generation new generation

from-space to-space

5. Most objects die very young. Few survive to be tenured.

old generation new generation

from-space to-space

2. Typical algorithms.

old generation, mark-sweep new generation,
copying

from-space to-space

Generational GC

36

+ Efficient. Short pauses. GC in new generation is quick (small area).
+ Old generation grows very slowly. Avoids fragmentation.

1. The heap is split into a large old and a small new generation.

old generation new generation

3. The program runs, allocating objects in from-space in new gen.

old generation new generation

from-space to-space

4. Objects surviving a few GCs in new gen are tenured – moved to old

old generation new generation

from-space to-space

5. Most objects die very young. Few survive to be tenured.

old generation new generation

from-space to-space

2. Typical algorithms.

old generation, mark-sweep new generation,
copying

from-space to-space

Reference-counting GC

37

Reference-counting GC

38

1. Objects are allocated on the heap. Each object keeps a count of the # of refs to it.

1 1 2 1 1 1 2 2

root

1

Reference-counting GC

39

1. Objects are allocated on the heap. Each object keeps a count of the # of refs to it.

1 1 2 1 1 1 2 2

root

1

2. When a reference is changed, counts are updated.

1 1 2 1 0 1 2 2

root

1

Reference-counting GC

40

1. Objects are allocated on the heap. Each object keeps a count of the # of refs to it.

1 1 2 1 1 1 2 2

root

1

2. When a reference is changed, counts are updated.

1 1 2 1 0 1 2 2

root

1

3. When a count goes to zero, the object is deallocated. Its references are followed, and
counts are decremented, and may go to zero. The process continues recursively.

1 1 1 1 0 1 2 1

root

0

Reference-counting GC

41

+ Short pauses: GC is incremental (a little work is done at each assignment)
- Inefficient (because work is done at each assignment)
- Cyclic structures are not garbage collected.
- No compaction – the heap becomes fragmented.

1. Objects are allocated on the heap. Each object keeps a count of the # of refs to it.

1 1 2 1 1 1 2 2

root

1

2. When a reference is changed, counts are updated.

1 1 2 1 0 1 2 2

root

1

3. When a count goes to zero, the object is deallocated. Its references are followed, and
counts are decremented, and may go to zero. The process continues recursively.

1 1 1 1 0 1 2 1

root

0

Fields and dynamic dispatch in OO

42

Typical runtime structures for objects

43

temps
vars

dynlink

activation
frames

retaddr
this
args

Typical runtime structures for objects

44

temps
vars

dynlink

activation
frames

retaddr
this
args

class
field1
field2

...

objects

Typical runtime structures for objects

45

temps
vars

dynlink

activation
frames

retaddr
this
args

class descriptors

super
method1
method2

...
static var1
static var2

...

class
field1
field2

...

objects

Typical runtime structures for objects

46

temps
vars

dynlink

activation
frames

m:
 pushq ...
 movq ...
 subq ...
 ...

code of method

retaddr
this
args

class descriptors

super
method1
method2

...
static var1
static var2

...

class
field1
field2

...

objects

Typical runtime structures for objects

47

temps
vars

dynlink

activation
frames

m:
 pushq ...
 movq ...
 subq ...
 ...

code of method

A method activation has a "this" pointer
- viewed as an extra 0th argument
- analogous to a static link
- used for accessing fields and methods

Note that vars, temps, and other args may also
point to objects (GC roots).

An object has
- a pointer to the class descriptor (for accessing methods).
- fields that may point to objects.

A class descriptor has
data common to all objects of that class:
- a pointer to the superclass descriptor
- pointers to its methods
- static variables

retaddr
this
args

class descriptors

super
method1
method2

...
static var1
static var2

...

class
field1
field2

...

objects

Fields

48

Inheritance of fields, prefixing

49

class A {
int fa1;
int fa2;

}

class B extends A {
int fb;

}

class C extends B {
int fc;

}

source code

Inheritance of fields, prefixing

50

class A {
int fa1;
int fa2;

}

class B extends A {
int fb;

}

class C extends B {
int fc;

}

source code

class
fa1
fa2

A-object

class
fa1
fa2
fb
fc

C-object

from A

from B
from C

class
fa1
fa2
fb

B-object

from A

from B

Prefixing
Fields of the superclass are
placed in front of local fields
("prefixing"). Each field is thus
located at an offset computed at
compile time, regardless of the
dynamic type of the object.

fa1 8(obj)
fa2 16(obj)
fb 24(obj)
fc 32(obj)

Field addresses

Access to fields (single inheritance)

51

class A {
int fa1;
int fa2;
void m() {
fa1 = fa2;
...

}
}

class B extends A {
int fb;

}

class C extends B {
int fc;

}

source code

void p(A r) {
r.m();

}

...
dynlink

retaddr
this

dynlink

retaddr
r
...

p

m

%rbp

Access to fields (single inheritance)

52

class A {
int fa1;
int fa2;
void m() {
fa1 = fa2;
...

}
}

class B extends A {
int fb;

}

class C extends B {
int fc;

}

source code

C object

class
fa1
fa2
fb

B object

class
fa1
fa2
fb
fc

The code for m knows the static
type of the object (A), but not the
dynamic type (B or C in this case).

Because of prefixing, the code for
m can access fa1 and fa2 through
an efficient indirect access, using
a fixed offset, without knowing the
dynamic type of the object.

Example code, assuming "this" pointer is at 16(%rbp):
A-m:
...
movq 16(%rbp), %rax # this -> rax
movq 16(%rax), 8(%rax) # fa2 -> fa1void p(A r) {

r.m();
}

...
dynlink

retaddr
this

dynlink

retaddr
r
...

p

m

%rbp

Access to fields (multiple inheritance, C++)

53

class A {
int fa1;
int fa2;

}

class B {
int fb1;
int fb2;

}

class C extends A, B {
int fc;

}

source code

void m() {
C rC = new C();
B rB = rC;
A rA = rC;

}

rA
rB
rC

dynlink

m frame

Access to fields (multiple inheritance, C++)

54

class A {
int fa1;
int fa2;

}

class B {
int fb1;
int fb2;

}

class C extends A, B {
int fc;

}

source code

void m() {
C rC = new C();
B rB = rC;
A rA = rC;

}

rA
rB
rC

dynlink

m frame

C object

class
fa1
fa2

class
fb1
fb2
fc

...

...

C descr

B descr

interior
pointer

subobject

Access to fields (multiple inheritance, C++)

55

class A {
int fa1;
int fa2;

}

class B {
int fb1;
int fb2;

}

class C extends A, B {
int fc;

}

source code

void m() {
C rC = new C();
B rB = rC;
A rA = rC;

}

rA
rB
rC

dynlink

m frame

Interior pointers and subobjects

Parts of the class hiearchy are treated like single inheritance:
rA and rC point to the full C object.

For remaining parts, allocate subobjects inside the main object.
rB points to the interior of the C object, to the B subobject.

Gives problems for garbage collector:
The GC needs to identify full objects. Solvable, but expensive.

C object

class
fa1
fa2

class
fb1
fb2
fc

...

...

C descr

B descr

interior
pointer

subobject

Dynamic dispatch

56

Dynamic dispatch
(Calling methods in presence of inheritance and overriding)

57

A-ma:
 ...

 B-mb:
 ...

 C-ma:
 ...

code
class A {
void ma() {
...

}
}

class B extends A {
void mb() {
...

}
}

class C extends B {
// overrides A.ma
void ma() {
...

}
}

source code

Dynamic dispatch
(Calling methods in presence of inheritance and overriding)

58

A-ma:
 ...

 B-mb:
 ...

 C-ma:
 ...

code

class
...

A object

class
...

class
...

B object

C object

...

...

B descr

C descr

...

A descr
class A {
void ma() {
...

}
}

class B extends A {
void mb() {
...

}
}

class C extends B {
// overrides A.ma
void ma() {
...

}
}

source code

Dynamic dispatch
(Calling methods in presence of inheritance and overriding)

59

A-ma:
 ...

 B-mb:
 ...

 C-ma:
 ...

code

class
...

A object

class
...

class
...

B object

C object

...

...

B descr

C descr

...

A descr

Two common implementation methods:
• Virtual tables. Uses static typing. Simula, C++, ...
• Hash tables. For dynamic typing. Smalltalk, Python,

JavaScript, Objective-C, ...

class A {
void ma() {
...

}
}

class B extends A {
void mb() {
...

}
}

class C extends B {
// overrides A.ma
void ma() {
...

}
}

source code

Virtual table dynamic dispatch
For statically typed languages: Simula, C++, ...

60

class A {
void ma() {
...

}
}

class B extends A {
void mb() {
...

}
}

class C extends B {
// overrides A.ma
void ma() {
...

}
}

source code

class
...

A object

class
...

class
...

B object

C object

super
ma
mb

super
ma
mb

B descr

C descr

super
ma

A descr

A-ma:
 ...

 B-mb:
 ...

 C-ma:
 ...

code

Virtual table dynamic dispatch
For statically typed languages: Simula, C++, ...

61

class A {
void ma() {
...

}
}

class B extends A {
void mb() {
...

}
}

class C extends B {
// overrides A.ma
void ma() {
...

}
}

source code

class
...

A object

class
...

class
...

B object

C object

super
ma
mb

super
ma
mb

B descr

C descr

super
ma

A descr

A-ma:
 ...

 B-mb:
 ...

 C-ma:
 ...

code

Virtual tables
Class descriptor contains virtual table (often called "vtable").
Pointers to superclass methods are placed in front of locally declared methods ("prefixing").
Each method pointer is located at an offset computed at compile time, using the static type.

ma 8(class)
mb 16(class)

Method addresses

dynlink

Calling a method via the virtual table

62

class A {
void ma() {
...

}
}

class B extends A {
void mb() {
...

}
}

class C extends B {
// overrides A.ma
void ma() {
...

}
}

class
...

A-object

class
...

class
...

B-object

C-object

super
ma
mb

super
ma
mb

B-descr

C-descr

super
ma

A-descr

A-ma:
 ...

 B-mb:
 ...

 C-ma:
 ...

code

void m(A r) {
r.ma();

}

retaddr
r
...

m

m:
...
movq 16(%rbp), %rax # r -> rax
pushq %rax # push the static link to ma (this)
movq (%rax), %rax # class descriptor -> rax
callq 8(%rax) # call ma

dynlink

Calling a method via the virtual table

63

class A {
void ma() {
...

}
}

class B extends A {
void mb() {
...

}
}

class C extends B {
// overrides A.ma
void ma() {
...

}
}

class
...

A-object

class
...

class
...

B-object

C-object

super
ma
mb

super
ma
mb

B-descr

C-descr

super
ma

A-descr

A-ma:
 ...

 B-mb:
 ...

 C-ma:
 ...

code

Method call
Follow pointer to object.
Follow pointer to class descriptor. Add offset for method.
Follow pointer to method.

void m(A r) {
r.ma();

}

retaddr
r
...

retaddr
this

dynlinkm

dynlinkC-ma

Hash table dynamic dispatch
For dynamically typed languages: Smalltalk, Python, JavaScript, Objective-C, ...

64

class A {
method s() {...}
method t() {...}

}

class B extends A {
method t() {...}

}

class C {
method u() {...}
method s() {...}

}

class ... {
method m(r) {
r.s();

}
}

dynlink
retaddr

this
r
...

m

methods and vars have
no static types A-s:

 ...

 A-t:
 ...

 B-t:
 ...

 C-u:
 ...

 C-s:
 ...

code

Hash table dynamic dispatch
For dynamically typed languages: Smalltalk, Python, JavaScript, Objective-C, ...

65

class A {
method s() {...}
method t() {...}

}

class B extends A {
method t() {...}

}

class C {
method u() {...}
method s() {...}

}

class ... {
method m(r) {
r.s();

}
}

dynlink
retaddr

this
r
...

m

methods and vars have
no static types A-s:

 ...

 A-t:
 ...

 B-t:
 ...

 C-u:
 ...

 C-s:
 ...

code
class

...

class
...

class
...

A object

B object

C object

Hash table dynamic dispatch
For dynamically typed languages: Smalltalk, Python, JavaScript, Objective-C, ...

66

class A {
method s() {...}
method t() {...}

}

class B extends A {
method t() {...}

}

class C {
method u() {...}
method s() {...}

}

class ... {
method m(r) {
r.s();

}
}

dynlink
retaddr

this
r
...

m

methods and vars have
no static types A-s:

 ...

 A-t:
 ...

 B-t:
 ...

 C-u:
 ...

 C-s:
 ...

code
class

...

class
...

class
...

A object

B object

C object

super
"t" ->

super
"u" ->
"s" ->

super
"s" ->
"t" ->

A descr

B descr

C descr

hashtable

Hash table dynamic dispatch
For dynamically typed languages: Smalltalk, Python, JavaScript, Objective-C, ...

67

class A {
method s() {...}
method t() {...}

}

class B extends A {
method t() {...}

}

class C {
method u() {...}
method s() {...}

}
Method call
Follow pointer to object. Then to class descriptor.
Lookup method pointer in hashtable. If not found, go to super, lookup there...

Does not rely on static types.
Can be used for dynamically typed languages.
Slow if not optimized.

class ... {
method m(r) {
r.s();

}
}

dynlink
retaddr

this
r
...

m

methods and vars have
no static types A-s:

 ...

 A-t:
 ...

 B-t:
 ...

 C-u:
 ...

 C-s:
 ...

code
class

...

class
...

class
...

A object

B object

C object

super
"t" ->

super
"u" ->
"s" ->

super
"s" ->
"t" ->

A descr

B descr

C descr

hashtable

Comparison, dynamic dispatch

68

Virtual tables
Can implement multiple inheritance by adapting prefixing, similarly to field access.
Cannot be used for dynamically typed languages.
Fast calls – only an indirect jump.

Hash tables
No problem with multiple inheritance.
Can be used for dynamically typed languages.
Slow calls – need to do hash table lookup.

Both can be optimized...

Optimization of procedural languages (C)

69

Optimization of procedural languages (C)

70

Local optimizations (within methods):
• common subexpression elimination
• constant propagation
• constant folding
• dead code elimination
• loop invariant code motion
• ...

Inlining (replace call by method body, get more code to optimize over)

Example local optimizations

71

a = b * c + d;
e = f + b * c;

Example local optimizations

72

a = b * c + d;
e = f + b * c;

t = b * c;
a = t + d;
e = f + t;

common subexpression elimination

Example local optimizations

73

a = b * c + d;
e = f + b * c;

t = b * c;
a = t + d;
e = f + t;

common subexpression elimination

int a = 37;
return a + 5;

Example local optimizations

74

a = b * c + d;
e = f + b * c;

t = b * c;
a = t + d;
e = f + t;

common subexpression elimination

int a = 37;
return a + 5;

int a = 37;
return 37 + 5;

constant propagation

int a = 37;
return 37 + 5;

Example local optimizations

75

a = b * c + d;
e = f + b * c;

t = b * c;
a = t + d;
e = f + t;

common subexpression elimination

int a = 37;
return a + 5;

int a = 37;
return 37 + 5;

constant propagation

int a = 37;
return 37 + 5;

int a = 37;
return 42;

constant folding

int a = 37;
return 42;

Example local optimizations

76

a = b * c + d;
e = f + b * c;

t = b * c;
a = t + d;
e = f + t;

common subexpression elimination

int a = 37;
return a + 5;

int a = 37;
return 37 + 5;

constant propagation

int a = 37;
return 37 + 5;

int a = 37;
return 42;

constant folding

int a = 37;
return 42;

return 42;
dead code elimination

for (int i ...) {
a = b + 3;
x[i] = a * i;

}

Example local optimizations

77

a = b * c + d;
e = f + b * c;

t = b * c;
a = t + d;
e = f + t;

common subexpression elimination

int a = 37;
return a + 5;

int a = 37;
return 37 + 5;

constant propagation

int a = 37;
return 37 + 5;

int a = 37;
return 42;

constant folding

int a = 37;
return 42;

return 42;
dead code elimination

for (int i ...) {
a = b + 3;
x[i] = a * i;

}

a = b + 3;
for (int i ...) {
x[i] = a * i;

}

loop invariant code motion

Inlining

78

void f(int b) {
...
for (int i ...) {
a = g(b);
x[i] = a * i;

}
}

int g(int x) {
return x + 3;

}

Inlining

79

void f(int b) {
...
for (int i ...) {
a = g(b);
x[i] = a * i;

}
}

int g(int x) {
return x + 3;

}

void f(int b) {
...
for (int i ...) {
a = b + 3;
x[i] = a * i;

}
}

int g(int x) {
return x + 3;

}

After inlining, there could be more opportunities for local optimizations.

Optimization of OO languages

80

Optimization of OO languages

81

Difficult to optimize OO with conventional techniques
• Many small methods – not much to optimize in each
• Virtual methods difficult to inline – actual method not known until runtime

If methods could be inlined...
... we could save the expensive calls
... we would get larger code chunks to optimize over

Approaches to optimization of OO code

82

Approaches to optimization of OO code

83

Static compilation approaches
Analysis of complete programs: "whole world analysis"
Find methods to be inlined. Then optimize further.
Drawback: does not support dynamic loading.
Available as an experimental option for Java 9, but removed in Java 16.

Dynamic compilation approaches
Inline methods at runtime (self-modifying code)
Dynamic compilation and optimization (at runtime)
Use simple conventional optimization techniques
(must be fast enough at runtime)
Very successful in practice (Java, CLR, Javascript, ...)
Can beat optimized C for some benchmarks.

Other mechanisms valuable to optimize in OO

84

Dynamic type tests (casts, instanceOf)

Synchronization and thread switches

Garbage collection

Interpretation vs Compilation in Java

85

Interpreting JVM
portable but slow

JIT – Just-In-Time compilation
compile each method to machine code the first time it is executed
requires very fast compilation – no time to optimize

AOT – Ahead-of-time compilation
Generate machine code for a complete program, before execution. This is
"normal" compilation, the way it is done in C, C++, ...
Problem to use this approach for Java: does not support dynamic loading.
Available as an experimental option for Java 9, but removed in Java 16.

Adaptive optimizing compiler
Run interpreter initially to get profiling data
Find "hot spots" which are translated to machine code, and then optimized
May outperform AOT compilers in some cases!
The approach used today in the SUN/Oracle JVM, called "HotSpot".

Inline call caches
a way to optimize method calls at runtime

86

Vehicle v = ...;
while (...) {
v = aList.get();
v.m();

}

Original calling code

Vehicle

Bus Truck Car

Inline call caches
a way to optimize method calls at runtime

87

Vehicle v = ...;
while (...) {
v = aList.get();
v.m();

}

Original calling code

Vehicle

Bus Truck Car

Vehicle v = ...;
while (...) {
v = aList.get();
Car-m-prologue(v);

}

Optimized calling code

optimize

Inline call caches
a way to optimize method calls at runtime

88

Vehicle v = ...;
while (...) {
v = aList.get();
v.m();

}

Original calling code

Vehicle

Bus Truck Car

Car-m-prologue:
if (receiver is not a Car)
receiver.m(); // Ordinary slow lookup

Car-m:
normal method body
...

Called method:

Vehicle v = ...;
while (...) {
v = aList.get();
Car-m-prologue(v);

}

Optimized calling code

optimize

Inline call caches
a way to optimize method calls at runtime

89

Based on hash table lookup
Do a normal (slow) lookup. The result is a method implementation, say Car-m.
Guess that the next call will be for an object of the same type (Car), i.e., to Car-m.
Replace the call with a direct call to Car-m-prologue, with the receiver as argument.
The prologue checks if the receiver is of the guessed type (Car).
If so, continue executing Car-m. If not, do a normal (slow) lookup.

Vehicle v = ...;
while (...) {
v = aList.get();
v.m();

}

Original calling code

Vehicle

Bus Truck Car

Car-m-prologue:
if (receiver is not a Car)
receiver.m(); // Ordinary slow lookup

Car-m:
normal method body
...

Called method:

Vehicle v = ...;
while (...) {
v = aList.get();
Car-m-prologue(v);

}

Optimized calling code

optimize

Polymorphic inline caches (PICs)
a generalization of inline call caches

90

Handle several possible object types
Inline the prologues into the calling code.
Check for several types.

Vehicle

Bus Truck Car

Vehicle v = ...;
while (...) {
v = aList.get();
Car-m-prologue(v);

}

Inlined call cache

Car-m-prologue:
if (!receiver is a Car)
receiver.m(); // normal lookup

Car-m:
normal method body
...

Methods:

Polymorphic inline caches (PICs)
a generalization of inline call caches

91

Handle several possible object types
Inline the prologues into the calling code.
Check for several types.

Vehicle

Bus Truck Car

Vehicle v = ...;
while (...) {
v = aList.get();
Car-m-prologue(v);

}

Inlined call cache

Car-m-prologue:
if (!receiver is a Car)
receiver.m(); // normal lookup

Car-m:
normal method body
...

Methods:

optimize

Vehicle v = ...;
while (...) {
v = aList.get();
if (v is a Car)
Car-m(v)

else if (v is a Truck)
Truck-m(v)

else
v.m(); // normal lookup

}

Polymorphic inlined cache

Car-m:
...

Truck-m:
...

Methods:

Inlining method bodies
Can be done after inlining calls

92

Inlining method bodies
Copy the called methods into the calling code

Vehicle

Bus Truck Car

Vehicle v = ...;
while (...) {
v = aList.get();
if (v is a Car)
Car-m(v)

else if (v is a Truck)
Truck-m(v)

else
v.m(); // normal lookup

}

Polymorphic inlined cache

Car-m:
...

Truck-m:
...

Methods:

Inlining method bodies
Can be done after inlining calls

93

Inlining method bodies
Copy the called methods into the calling code

Vehicle

Bus Truck Car

Vehicle v = ...;
while (...) {
v = aList.get();
if (v is a Car)
Car-m(v)

else if (v is a Truck)
Truck-m(v)

else
v.m(); // normal lookup

}

Polymorphic inlined cache

Car-m:
...

Truck-m:
...

Methods:

optimize

Vehicle v = ...;
while (...) {
v = aList.get();
if (v is a Car)
... // code for Car-m

else if (v is a Truck)
... // code for Truck-m

else
v.m(); // normal lookup

}

with inlined methods

Car-m:
...

Truck-m:
...

Methods:

Further optimization

94

Now there is a large code chunk at the calling site
Ordinary local optimizations can now be done
- common subexpression elimination
- loop invariant code motion
- ...

Vehicle

Bus Truck Car

optimize

Vehicle v = ...;
while (...) {
v = aList.get();
if (v is a Car)
Car-m(v)

else if (v is a Truck)
Truck-m(v)

else
v.m(); // normal lookup

}

Polymorphic inlined cache

Car-m:
...

Truck-m:
...

Methods:

Vehicle v = ...;
while (...) {
v = aList.get();
if (v is a Car)
... // code for Car-m

else if (v is a Truck)
... // code for Truck-m

else
v.m(); // normal lookup

}

with inlined methods

Car-m:
...

Truck-m:
...

Methods:

Dynamic adaptive compilation

95

Keep track of execution profile

Add PICs dynamically
Order cases according to frequency
Inline the called methods if sufficiently frequent
Optimize the code if sufficiently frequent

Adapt the optimizations depending on current profile

Dynamic adaptive compilation

96

Techniques originated in the Smalltalk and Self compiler

Adapted to Java in SUN/Oracle's HotSpot JVM
Techniques originally developed for dynamically typed languages useful also for statically typed languages!
Dynamic adaptive optimizations may outperform optimizations possible in a static compiler!

Client vs Server VM
Local optimizations vs heavy inlining and other memory intensive optimizations.
For modern 64-bit machines, there is only a Server version available.

Warm-up vs. Steady state
Slower when the program starts (warm-up). Fast after a while (steady-state).

A huge success:
Fast execution in spite of fast compilation and dynamic loading.
Now used in other major languages like C# (CLR platform), Javascript, etc.
Many languages compile to Java Bytecode to take advantage of the HotSpot JVM.

Major advances in OO implementation

97

SIMULA

Smalltalk

C++

via Objective-C

Java

Self

1970 1980 1990 2000

Dynamic compilation

dynamic typing

static typing

prefixing
vtables

inline call caches

PICs

HotSpot

2010

V8
(JavaScript)

Summary questions

98

• What is the difference between dynamic and static typing?
• Is Java statically typed?
• What is a heap pointer?
• How are inherited fields represented in an object?
• What is prefixing?
• How can dynamic dispatch be implemented?
• What is a virtual table?
• Why is it not straightforward to optimize object-oriented languages?
• What is an inline call cache?
• What is a polymorphic inline cache (PIC)?
• How can code be further optimized when call caches are used?
• What is meant by dynamic adaptive compilation?

