
EDAN65: Compilers, Lecture 07 B

Introduction to Attribute Grammars
intrinsic, synthesized, inherited

Görel Hedin
Revised: 2023-09-12

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

Visitors
Inter-type declared methods
Attribute grammars

Computations on the AST

3

IMPERATIVE COMPUTATIONS DECLARATIVE COMPUTATIONS

Computations on the AST

4

IMPERATIVE COMPUTATIONS
• Computations that "do" something.

(have an effect)
• Modify state
• Output to files

• Useful for
• Interpretation
• Printing error messages
• Output of code

• Technique:
• Methods, modularized with

• Inter-type declarations, or
• Visitors

DECLARATIVE COMPUTATIONS
• Computations of properties

(of nodes in the AST)
• No side-effects

• Useful for computing
• Name bindings
• Types of expressions
• Error information

• Technique
• Attribute grammars

Properties of AST nodes

5

INTRINSIC PROPERTIES
• Given directly by the AST:

• children
• token values (like the name of

an identifier)

DERIVED PROPERTIES
• Computed using the AST. E.g.,

• the type of an expression
• the decl of an identifier
• the code of a method
• ...

• Can be defined using attribute grammars

Example derived properties

6

int gcd2(int a, int b) {
if (b == 0) {
return a;

}
return gcd2(b, a % b);

}

Does this method have any compile-time errors?

What is the type of this expression?

What is the declaration of this b?

Attribute grammars:
Express these properties as attributes of AST nodes.
Define the attributes by simple directed equations.
The equations can be solved automatically.

Abstract grammar
defines the structure of ASTs

7

Abstract grammar: Example AST for "a + b + c"
(an instance of the abstract grammar)abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID:String>; Add

IdUseAdd

IdUseIdUse

Left

Left

Right

Right

ID="a" ID="b"

ID="c"

Abstract grammar
defines the structure of ASTs

8

Abstract grammar: Example AST for "a + b + c"
(an instance of the abstract grammar)abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID:String>; Add

IdUseAdd

IdUseIdUse

Left

Left

Right

Right

ID="a" ID="b"

ID="c"

The terminal symbols (like ID) are
intrinsic attributes – constructed
when building the AST. They are not
defined by equations.

Also the children can be
seen as intrinsic attributes.

Attribute grammars
extends abstract grammars with attributes

9

Abstract grammar: Example AST for "a + b + c"
(an instance of the abstract grammar)abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID:String>; Add

IdUseAdd

IdUseIdUse
ID="a" ID="b"

ID="c"

Attribute grammar modules:

decl=... decl=...

decl=...
syn IdDecl IdUse.decl() = ...;

syn Type Exp.type();
eq Add.type() = ...;
eq IdUse.type() = ...;

type=... type=...

type=...

type=...

type=...

Each declared attribute will have instances in the AST

Attributes and equations

10

Abstract grammar: Example AST for "a + b + c"
(an instance of the abstract grammar)abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID:String>; Add

IdUseAdd

IdUseIdUse
ID="a" ID="b"

ID="c"
Think of attributes as "fields" in the tree nodes.

Each equation defines an attribute in terms of
other attributes in the tree.

syn Type ASTClass.attribute();

eq definedAttribute = function of other attributes;

An evaluator computes the values of the attributes (solves the equation system).
Think of the equations as "methods" called by the evaluator.

Attribute mechanisms

11

Intrinsic* – given value when the AST is constructed (no equation)

Synthesized* – the equation is in the same node as the attribute

Inherited* – the equation is in an ancestor

Broadcasting – the equation holds for a complete subtree

Reference – the attribute can be a reference to an AST node.

Parameterized – the attribute can have parameters

NTA – the attribute is a "nonterminal" (a fresh node or subtree)

Collection – the attribute is defined by a set of contributions, instead of by an equation.

Circular – the attribute may depend on itself (solved using fixed-point iteration)

* Treated in this lecture

Introduction to attribute grammars

12

Simple example
attributes and equations

13

b c

AST node

x y

z

z

attribute

v

eq z=b.x+1
eq c.y=z+c.v

eq x=2

eq a0 = f(a1, ..., an)
equation:

defined attribute

function of other attributes

eq v=5

What is the value of y?
Solve the equation system!

(Easy! Just use substitution.)

Simple example
synthesized and inherited attributes

14

b c

syn x inh y

syn z

syn v

eq z=b.x+1
eq c.y=z+c.v

eq x=2

defines attribute in the node – the attribute is synthesized

defines attribute in the child – the attribute is inherited

eq v=5

Donald Knuth introduced attribute grammars in 1968.
The term "inherited" is not related to inheritance in object-orientation.
Both terms originated during the 1960s.

Simple example
declaring attributes and equations in a (JastAdd) grammar

15

A

CB

getB getC

syn x inh y

syn z

syn v

eq z=b.x+1
eq c.y=z+c.v

eq x=2 eq v=5

Abstract grammar:
A ::= B C;
B;
C;

Attribute grammar module:

aspect SomeAttributes {
 syn int A.z();
 syn int B.x();
 syn int C.v();
 inh int C.y();
 eq A.z() = getB().x()+1;
 eq A.getC().y() = z() + getC().v();
 eq B.x() = 2;
 eq C.v() = 5;
}

uses inter-type declarations for attributes and equations

Note! The grammar is declarative. The order of the equations is irrelevant.
JastAdd solves the equation system automatically.

Shorthands and alternative forms
equation in attribute declaration, method body syntax

16

Canonical form:

syn int A.z();
eq A.z() = getB().x()+1;

Alternative shorthand form with equation directly in attribute declaration:

syn int A.z() = getB().x()+1;

Alternative form with method body syntax:

syn int A.z() {
 return getB().x()+1;
}

Equations must be observationally pure
(free from externally visible side effects)

17

syn int A.z() {
 return getB().x()+1;
}

Equations must be observationally pure
(free from externally visible side effects)

Which of these examples are ok?

18

syn int A.z() {
 return getB().x()+1;
}

int B.f = 0;
syn int B.x() {
 f++;
 return f;
}
syn int B.y() {
 f++;
 return f;
}

syn int A.z() {
 int r = 0;
 r = getB().x()+1;
 return r;
}

Equations must be observationally pure
(free from externally visible side effects)

Which of these examples are ok?

19

OK – no side effects

syn int A.z() {
 return getB().x()+1;
}

Not OK – visible side effects!

int B.f = 0;
syn int B.x() {
 f++;
 return f;
}
syn int B.y() {
 f++;
 return f;
}

OK – side effects, but only local
syn int A.z() {
 int r = 0;
 r = getB().x()+1;
 return r;
} Will give different results if

evaluated more than once, and
depending on order of evaluation.

Warning! JastAdd does not check observational purity

Well-formed attribute grammar

20

Abstract grammar:
A ::= B C;
B ::= D;
C ::= D;
D;

An AG is well-formed if there is
exactly one defining equation for each attribute in any AST.

Well-formed attribute grammar

21

Abstract grammar:
A ::= B C;
B ::= D;
C ::= D;
D;

An AG is well-formed if there is
exactly one defining equation for each attribute in any AST.
Which of these are well-formed?

syn int A.x();
eq A.x() = 3;

inh int B.y();
eq A.getB().y() = 5;

inh int D.z();
eq B.getD().z() = 7;

inh int D.z();
eq B.getD().z() = 7;
eq C.getD().z() = 11;

syn int A.x();

syn int A.x();
eq A.x() = 3;
eq A.x() = 17;

Well-formed attribute grammar

22

Abstract grammar:
A ::= B C;
B ::= D;
C ::= D;
D;

syn int A.x();
eq A.x() = 3;

inh int B.y();
eq A.getB().y() = 5;

inh int D.z();
eq B.getD().z() = 7;

inh int D.z();
eq B.getD().z() = 7;
eq C.getD().z() = 11;

JastAdd checks well-formedness at generation time

Well formed

Well formed

Not well formed

Well formed

syn int A.x();

Not well formed

syn int A.x();
eq A.x() = 3;
eq A.x() = 17;

Not well formed

An AG is well-formed if there is
exactly one defining equation for each attribute in any AST.
Which of these are well-formed?

Well-defined attribute grammar

23

Abstract grammar:
A ::= B C;
B ::= D;
C ::= D;
D;

An AG is well-defined if it is well-formed, and
there is a unique solution that can be computed.

Well-defined attribute grammar

24

Abstract grammar:
A ::= B C;
B ::= D;
C ::= D;
D;

syn int A.x() = 3;

syn int A.y() {
 int x = 0;
 while (true)
 x++;
 return x;
}

syn int A.s() = t();
syn int A.t() = s();

An AG is well-defined if it is well-formed, and
there is a unique solution that can be computed.
Which of these are well-defined?

Well-defined attribute grammar

25

Abstract grammar:
A ::= B C;
B ::= D;
C ::= D;
D;

syn int A.x() = 3;

syn int A.y() {
 int x = 0;
 while (true)
 x++;
 return x;
}

JastAdd checks circularity dynamically, at evaluation time.
JastAdd supports well-defined circular attributes by a special
construction, see later lecture.

Well defined

Not well defined.
Computation does not terminate.

syn int A.s() = t();
syn int A.t() = s();

Not well defined. Circular definition.

An AG is well-defined if it is well-formed, and
there is a unique solution that can be computed.
Which of these are well-defined?

Synthesized attributes

26

Synthesized attributes

27

A

B

Synthesized attribute:
The equation is in the same node as the attribute.

s = ...

eq s() = f(...);

Synthesized attributes

28

A

B

Synthesized attribute:
The equation is in the same node as the attribute.

s = ...

eq s() = f(...);

For properties that depend on information in the node (or its children).

Typically used for propagating information upwards in the tree.

syn T B.s() = f(...);
JastAdd syntax:

this code is in the context of B

Synthesized attributes
simple example

29

A

B

A ::= B;
B;

syn int B.s() = 3;

Draw the attribute and its value!

Synthesized attributes
simple example

30

A

B
s = 3

A ::= B;
B;

syn int B.s() = 3;

Or equivalently, write the declaration and equation separately.

syn int B.s();
eq B.s() = 3;

Or equivalently, write the equation as a method body:

syn int B.s() {
 return 3;
}

Nota bene!
The method body must be observationally
pure.

Synthesized attributes
subtypes can have different equations

31

A

D

A ::= B;
abstract B;
C : B;
D : B;
E : D;

syn int B.s();
eq C.s() = 4;
eq D.s() = 5;
eq E.s() = 6;

A

C
Different subclasses can have different equations.

A

E

Three different ASTs.
Draw the attributes and their values!

Synthesized attributes
subtypes can have different equations

32

A

D
s = 5

A ::= B;
abstract B;
C : B;
D : B;
E : D;

syn int B.s();
eq C.s() = 4;
eq D.s() = 5;
eq E.s() = 6;

A

C
s = 4

Different subclasses can have different equations.

A

E
s = 6

Synthesized attributes
an equation in the supertype can be overridden

33

A

D

A ::= B;
abstract B;
C : B;
D : B;
E : D;

syn int B.s() = 11;
eq E.s() = 17;

A

C

A

E

Synthesized attributes
an equation in the supertype can be overridden

34

A

D
s = 11

A ::= B;
abstract B;
C : B;
D : B;
E : D;

syn int B.s() = 11;
eq E.s() = 17;

A

C
s = 11

The equation in B holds for all subtypes, except for those overriding the equation.

A synthesized attribute is similar to a side-effect free method, but:
• its value is cached (memoized) the first time it is accessed.
• circularity is checked at runtime (results in exception)

A

E
s = 17

Inherited attributes

35

Inherited attributes

36

AInherited attribute:
The equation is in an ancestor

i = ...

eq getB().i() = f(...);

B

Inherited attributes

37

AInherited attribute:
The equation is in an ancestor

i = ...

eq getB().i() = f(...);

B

For computing a property that depends on the context of the node.

Typically used for propagating information downwards in the tree.

inh T B.s();
eq A.getB().i() = f(...);

JastAdd syntax:

this code is in the context of A

Inherited attributes
simple example

38

A ::= B C;
B;
C;

inh int B.i();
eq A.getB().i() = 2;

Draw the attribute and its value!

A

CB

Inherited attributes
simple example

39

A ::= B C;
B;
C;

inh int B.i();
eq A.getB().i() = 2;

A

C
i = 2

B

Inherited attributes
different equations for different children

40

A ::= Left:B Right:B;
B;

inh int B.i();
eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;

Draw the attributes and their values!

A

BB

The parent can specify different equations
for its different children.

Inherited attributes
different equations for different children

41

A ::= Left:B Right:B;
B;

inh int B.i();
eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;

A

BB
i = 2 i = 3

The parent can specify different equations
for its different children.

This is useful, for example, when defining scope rules
for qualified access. The lookup attributes should have
different values for the different IdUses.

Dot

IdUseIdUse
ID="a" ID="a"

lookup(s) = ... lookup(s) = ...

Inherited attributes
a subtype can override an equation

42

A ::= Left:B Right:B;
B;
A2 : A;

inh int B.i();
eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
eq A2.getLeft().i() = 4;

A

BB

A2

BB

Inherited attributes
a subtype can override an equation

43

A ::= Left:B Right:B;
B;
A2 : A;

inh int B.i();
eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
eq A2.getLeft().i() = 4;

A

BB
i = 2 i = 3

A2

BB
i = 4 i = 3

Inherited attributes
a list child has an index

44

A ::= B*;
B;

eq A.getB(int index).x() = (index+1) * (index+1);
inh int B.x();

A

BB

For list children, an index can be used in the equation

List

B

Inherited attributes
a list child has an index

45

A ::= B*;
B;

eq A.getB(int index).x() = (index+1) * (index+1);
inh int B.x();

A

BB

For list children, an index can be used in the equation

x = 1 x= 4

List

B
x = 9

This is useful, for example, when defining name analysis with
declare-before-use semantics.

index = 0 index = 1 index = 2

Example: Fractions

46

Goal
Compute f for each L, where f is L's fraction of the sum of all val attributes.

47

S ::= N;
abstract N;
P : N ::= Left:N Right:N;
L : N ::= <val:int>;

S

P

L
val = 1

P

L L
val = 3 val = 4

Goal
Compute f for each L, where f is L's fraction of the sum of all val attributes.

48

S ::= N;
abstract N;
P : N ::= Left:N Right:N;
L : N ::= <val:int>;

syn float L.f() = getval()/sum();
inh int N.sum();
eq int P.getLeft().sum() = sum();
eq int P.getRight().sum() = sum();
eq int S.getN().sum() = getN().partsum();
syn int N.partsum();
eq P.partsum() =
 getLeft().partsum() +
 getRight().partsum();
eq L.partsum() = getval();

S

P

L
val = 1

P

L L
val = 3 val = 4

f = 0.125

f = 0.375 f = 0.5

sum = 8

sum = 8

sum = 8

sum = 8sum = 8

partsum = 8

partsum = 1

partsum = 3 partsum = 4

partsum = 7

Demand evaluation and memoization

49

50

S ::= N;
abstract N;
P : N ::= Left:N Right:N;
L : N ::= <val:int>;

syn float L.f() = sum()/getval();
inh int N.sum();
eq int P.getLeft().sum() = sum();
eq int P.getRight().sum() = sum();
eq int S.getN().sum() = getN().partsum();
syn int N.partsum();
eq P.partsum() =
 getLeft().partsum() +
 getRight().partsum();
eq L.partsum() = getval();

S root = ...;
L leaf1 = root...; L leaf2 = root...;
System.out.println(leaf1.f());
System.out.println(leaf2.f());

S

P

L
val = 1

P

L L
val = 3 val = 4

If not cached
 find the equation
 compute its right-hand side
 cache the value
fi
Return the cached value

Recursive evaluation algorithm
with memoization

51

S

P

L
val = 1

P

L L
val = 3 val = 4

f = 0.1258
sum = 87

sum = 8 6
partsum = 8 5

partsum = 11

partsum = 7 4

partsum = 3
2

partsum = 4 3

f = 0.37511
sum = 810

sum = 8 9

memoization order

If not cached
 find the equation
 compute its right-hand side
 cache the value
fi
Return the cached value

Recursive evaluation algorithm
with memoization

S ::= N;
abstract N;
P : N ::= Left:N Right:N;
L : N ::= <val:int>;

syn float L.f() = sum()/getval();
inh int N.sum();
eq int P.getLeft().sum() = sum();
eq int P.getRight().sum() = sum();
eq int S.getN().sum() = getN().partsum();
syn int N.partsum();
eq P.partsum() =
 getLeft().partsum() +
 getRight().partsum();
eq L.partsum() = getval();

S root = ...;
L leaf1 = root...; L leaf2 = root...;
System.out.println(leaf1.f());
System.out.println(leaf2.f());

root

leaf1

leaf2

Summary questions

52

• What is an attribute grammar?
• What is an intrinsic attribute?
• What is an externally visible side-effect? Why are they not allowed in the

equations?
• What is a synthesized attribute?
• What is an inherited attribute?
• What is the difference between a declarative and an imperative specification?
• What is demand evaluation?
• Why are attributes cached?

You can now do all of Assignment 3.
But it is recommended to do the 7B quiz first!

