
EDAN65: Compilers, Lecture 06 A

LR parsing

Görel Hedin
Revised: 2023-09-11

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

LR parsing

2

LR parsing

3

Recall main parsing ideas

LR(1): decides to build X after seeing
the first token following its subtree.
The tree is built bottom up.

A X

B C

t r u v r u r u ...

S

A X

LL(1): decides to build X after seeing
the first token of its subtree.
The tree is built top down.

t r u v r u r u ...

4

Recall different parsing algorithms

Ambiguous

Unambiguous

All context-free grammars

LR

LL

LL:
Left-to-right scan
Leftmost derivation
Builds tree top-down
Simple to understand

LR:
Left-to-right scan
Rightmost derivation
Builds tree bottom-up
More powerful
Can handle left recursion and common prefix

This lecture

5

Recall: LL(k) vs LR(k)

LL(k) LR(k)

Parses input Left-to-right

Derivation Leftmost Rightmost

Lookahead k symbols

Build the tree top down bottom up

Select rule after seeing its first
k tokens

after seeing all its tokens, and an
additional k tokens

Left recursion No Yes

Unlimited common
prefix

No Yes

Resolve ambiguities
through rule priority

Dangling else Dangling else, associativity,
priority

Error recovery Trial-and-error Good algorithms exist

Implement by hand? Possible. Too complicated.
Use a generator.

6

LR parsing

Add the EOF token ($) and an extra start rule.

The parser uses a stack of symbols (terminals and nonterminals).

The parser looks at the current input token and decides to do one of
the following actions:

 shift – Push the input token onto the stack. Read the next token.
 reduce –
 Match the top symbols on the stack with a production right-hand side.
 Pop those symbols and push the left-hand side nonterminal.
 At the same time, build this part of the tree.
 accept – when the parser is about to shift $, the parse is complete.

The parser uses a finite state automaton (encoded in a table) to decide
which action to take and which state to go to after each a shift action.

7

LR parsing example p0: S -> Stmt $
p1: Stmt -> ID "=" Exp
p2: Exp -> ID
p3: Exp -> Exp "+" ID

Grammar:

• ID = ID + ID $

Stack•Input

8

shift: push token onto stack,
read next token
reduce: pop rhs, push lhs,
build part of tree
accept: the tree is ready

LR parsing example p0: S -> Stmt $
p1: Stmt -> ID "=" Exp
p2: Exp -> ID
p3: Exp -> Exp "+" ID

Grammar:

• ID = ID + ID $

Stack•Input

9

shift

ID • = ID + ID $

ID = • ID + ID $

shift

ID = ID • + ID $

shift

ID = Exp • + ID $

 ID

reduce Exp -> ID

ID = Exp + • ID $

 ID

ID = Exp + ID • $

 ID

shift

shift

reduce Exp -> Exp "+" ID

ID = Exp • $

 Exp + ID

 ID

reduce Stmt -> ID "=" Exp

Stmt • $

ID = Exp

 Exp + ID

 ID

accept

Follow the reduction steps in
reverse order. They correspond to
a rightmost derivation.

Stmt =>
ID "=" Exp =>
ID "=" Exp "+" ID =>
ID "=" ID "+" ID

shift: push token onto stack,
read next token
reduce: pop rhs, push lhs,
build part of tree
accept: the tree is ready

LR(1) items

The parser uses a DFA (a deterministic finite automaton) to decide whether
to shift or reduce.

The states in the DFA are sets of LR items.

LR(1) item:

X -> a • b ,t|s

10

LR(1) items

The parser uses a DFA (a deterministic finite automaton) to decide whether
to shift or reduce.

The states in the DFA are sets of LR items.

An LR(1) item is a production extended with:
• A dot (•), corresponding to the position in the input sentence.
• One or more possible lookahead terminal symbols, t,s

(we will use ? when the lookahead doesn't matter)

LR(1) item:

X -> a • b ,t|s

The LR(1) item corresponds to a state where:
• The topmost part of the stack is a.
• The first part of the remaining input is expected to match b(t|s)

11

Constructing the LR state machine
p0: S -> E $
p1: E -> T "+" E
p2: E -> T
p3: T -> ID

Grammar:

12

Constructing state 1p0: S -> E $
p1: E -> T "+" E
p2: E -> T
p3: T -> ID

Grammar:

First, take the start production and place the dot
in the beginning...

S -> • E $,?

S -> • E $,?
E -> • T "+" E ,$
E -> • T ,$

Note that there is a nonterminal E right after the dot,
and it is followed by a terminal $. Add the
productions for E, with $ as the lookahead.

Note that there is a nonterminal T right after the dot,
and which is followed by either "+" or $. Add the
productions for T, with "+" and $ as the lookahead.
(We write them on the same line as a shorthand.)

We have already added productions for all
nonterminals that are right after the dot. Nothing
more can be added.
We are finished constructing state 1.

Adding new productions for nonterminals following the dot, until no more
productions can be added, is called taking the closure of the LR item set.

S -> • E $,?
E -> • T "+" E ,$
E -> • T ,$
T -> • ID ,+|$

1

13

Constructing the next states
p0: S -> E $
p1: E -> T "+" E
p2: E -> T
p3: T -> ID

Grammar:

S -> • E $,?
E -> • T "+" E ,$
E -> • T ,$
T -> • ID ,+|$

S -> E • $,?

E -> T • "+" E ,$
E -> T • ,$

T -> ID • ,+|$

E

T

ID

1

Note that the dot is followed by E, T, and ID in state 1. For each of these
symbols, create a new set of LR items, by advancing the dot passed that
symbol. Then complete the states by taking the closure.
(Nothing had to be added for these states.)

2

3

4

14

Completing the LR DFA
Grammar:
p0: S -> E $
p1: E -> T "+" E
p2: E -> T
p3: T -> ID

S -> • E $?
E -> • T "+" E $
E -> • T $
T -> • ID +,$

S -> E • $,?

E -> T • "+" E ,$
E -> T • ,$

T -> ID • ,+|$

E -> T "+" • E ,$
E -> • T "+" E ,$
E -> • T ,$
T -> • ID ,+|$

E

T

ID

"+"

E -> T "+" E • ,$

E

T

ID

1

2

3

4

6

5

Complete the DFA by advancing the dot, creating new states, completing
them by taking the closure. If there is already a state with the same items,
we use that state instead.

15

Constructing the LR table

state "+" ID $ E T

1

2

3

4

5

6

16

p0: S -> E $
p1: E -> T "+" E
p2: E -> T
p3: T -> ID

S -> • E $,?
E -> • T "+" E ,$
E -> • T ,$
T -> • ID ,+|$

S -> E • $,?

E -> T • "+" E ,$
E -> T • ,$

T -> ID • ,+|$

E -> T "+" • E ,$
E -> • T "+" E ,$
E -> • T ,$
T -> • ID ,+|$

E

T

ID

"+"

E -> T "+" E • ,$
E

T

ID

1

2

3

4

6

5

Constructing the LR table

state "+" ID $ E T

1

2

3

4

5

6

• For each token edge t, from state j to state k, add a shift
action "s k" (shift and goto state k) to table[j,t]. (This
corresponds to reading a token and pushing it onto the
stack.)

• For each state j that contains an LR item where the dot is
at the end, add a reduce action "r p" (reduce p) to
table[j,t], where p is the production and t is the lookahead
token.
(This corresponds to popping the right-hand side of a
production off the stack.)

• For each nonterminal edge X, from state j to state k, add a
goto action "g k" (goto state k) to table[j,X].
(This corresponds to pushing the left-hand side
nonterminal onto the stack.)

• For a state j containing an LR item with the dot to the left
of $, add an accept action "a" to table[j,$].
(If we are about to shift $, the parse has succeeded.)

17

Constructing the LR table

state "+" ID $ E T

1 s 4 g 2 g 3

2 a

3 s 5 r p2

4 r p3 r p3

5 s 4 g 6 g 3

6 r p1

18

• For each token edge t, from state j to state k, add a shift
action "s k" (shift and goto state k) to table[j,t]. (This
corresponds to reading a token and pushing it onto the
stack.)

• For each state j that contains an LR item where the dot is
at the end, add a reduce action "r p" (reduce p) to
table[j,t], where p is the production and t is the lookahead
token.
(This corresponds to popping the right-hand side of a
production off the stack.)

• For each nonterminal edge X, from state j to state k, add a
goto action "g k" (goto state k) to table[j,X].
(This corresponds to pushing the left-hand side
nonterminal onto the stack.)

• For a state j containing an LR item with the dot to the left
of $, add an accept action "a" to table[j,$].
(If we are about to shift $, the parse has succeeded.)

Using the LR table for parsing

state "+" ID $ E T

1 s 4 g 2 g 3

2 a

3 s 5 r p2

4 r p3 r p3

5 s 4 g 6 g 3

6 r p1

•Use a symbol stack and a state stack
•The current state is the state stack top.
•Push state 1 to the state stack
•Perform an action for each token:
•Case Shift s:

•Push the token to the symbol stack
•Push s to the state stack
•The current state is now s.

•Case Reduce p:
•Pop symbols for the rhs of p
•Push the lhs symbol X of p
•Pop the same number of states
•Let s1 = the top of the state stack
•Let s2 = table[s1,X]
•Push s2 to the state stack
•The current state is now s2.

•Case Accept: Report successful parse

19

Example of LR parsing

state "+" ID $ E T

1 s 4 g 2 g 3

2 a

3 s 5 r p2

4 r p3 r p3

5 s 4 g 6 g 3

6 r p1

State
stack

Symbol
stack

Input action

1 ID + ID $

Parsing ID + ID $
p0: S -> E $
p1: E -> T "+" E
p2: E -> T
p3: T -> ID

Grammar:

Parse table:

20

Example of LR parsing

state "+" ID $ E T

1 s 4 g 2 g 3

2 a

3 s 5 r p2

4 r p3 r p3

5 s 4 g 6 g 3

6 r p1

State
stack

Symbol
stack

Input action

1 ID + ID $ shift 4

1 4 ID + ID $ reduce p3

1 3 T + ID $ shift 5

1 3 5 T + ID $ shift 4

1 3 5 4 T + ID $ reduce p3

1 3 5 3 T + T $ reduce p2

1 3 5 6 T + E $ reduce p1

1 2 E $ accept

Parsing ID + ID $
p0: S -> E $
p1: E -> T "+" E
p2: E -> T
p3: T -> ID

Grammar:

Parse table:

21

Conflict in an LR table

p0: S -> E $
p1: E -> E "+" E
p2: E -> E "*" E
p3: E -> ID

Grammar:
Parts of the parse table:

E -> E • "+" E ,?
E -> E "*" E • ,"+"

3

5

"+"

Parts of the DFA:

Fill in the parse table.

What is the problem?

state ... "+"

...

3

...

22

Conflict in an LR table

state ... "+"

...

3 s 5, r p2

...

p0: S -> E $
p1: E -> E "+" E
p2: E -> E "*" E
p3: E -> ID

Grammar: Parts of the parse table:

E -> E • "+" E ,?
E -> E "*" E • ,"+"

3

5

"+"

Parts of the DFA:

There is a shift-reduce conflict.
The grammar is ambiguous.
In this case, we can resolve the conflict by
selecting one of the actions.

To understand which one, think about what
the top of the stack looks like. Think about
what will happen later if we take the shift rule
or the reduce rule.

23

Analyzing LR conflicts ...
Example output from parser generator (NeoBeaver):
WARNING: resolved SHIFT/REDUCE conflict on [PLUS] by selecting SHIFT:
 REDUCE exp = exp PLUS exp
 SHIFT PLUS
Context:
 exp = exp PLUS exp . [PLUS]
 exp = exp . PLUS exp [PLUS]

Note! The parser generator
automatically resolves the conflict
by shifting.

Is this what we want???

"Context" lists the LR-items in the
conflicting state.

24

Analyzing LR conflicts ...
Example output from parser generator (NeoBeaver):
WARNING: resolved SHIFT/REDUCE conflict on [PLUS] by selecting SHIFT:
 REDUCE exp = exp PLUS exp
 SHIFT PLUS
Context:
 exp = exp PLUS exp . [PLUS]
 exp = exp . PLUS exp [PLUS]

expr -> expr PLUS expr •
expr -> expr • PLUS expr

Line up the dots in the state:

The top of stack and input may look like:

... expr PLUS expr • PLUS expr ...

top of stack remaining input

Note! The parser generator
automatically resolves the conflict
by shifting.

Is this what we want???

"Context" lists the LR-items in the
conflicting state.

In assignment 2: Make sure you
change the grammar to resolve all
conflicts, even if they are only
warnings.

25

... Analyzing LR conflicts

expr -> expr PLUS expr • ,PLUS
expr -> expr • PLUS expr ,?

Line up the dots in the state:

If we shift

... expr PLUS expr • PLUS expr expr PLUS expr • PLUS expr ...

expr

expr

If we reduce

expr

expr

Which rule should we choose?
26

Different kinds of conflicts

E -> E • "+" E ,?
E -> E "*" E • ,"+"

A shift-reduce conflict.

A -> B C • ,t
D -> C • ,t

A reduce-reduce conflict.

27

Different kinds of conflicts

E -> E • "+" E ,?
E -> E "*" E • ,"+"

A shift-reduce conflict.

A -> B C • ,t
D -> C • ,t

A reduce-reduce conflict.

Shift-reduce conflicts can sometimes be solved with precedence rules. In
particular for binary expressions with priority and associativity.

For other cases, you need to carefully analyze the shift-reduce conflicts to see if
precedence rules are applicable, or if you need to change the grammar.

For reduce-reduce conflicts, it is advisable to think through the problems, and
change the grammar.

28

Typical precedence rules for an LR parser generator

E -> E "==" E
E -> E "**" E
E -> E "*" E
E -> E "/" E
E -> E "+" E
E -> E "-" E
E -> ID
E -> INT

// Precedence rules
%right "**"
%left "*", "/"
%left "+", "-"
%nonassoc "="

Shift-reduce conflicts can be automatically resolved
using precedence rules.

Operators in the same rule have the same priority
(e.g., PLUS, MINUS).

Operators in an earlier rule have higher priority (e.g.
TIMES has higher prio than PLUS.)

29

Typical precedence rules for an LR parser generator

E -> E "==" E
E -> E "**" E
E -> E "*" E
E -> E "/" E
E -> E "+" E
E -> E "-" E
E -> ID
E -> INT

// Precedence rules
%right "**"
%left "*", "/"
%left "+", "-"
%nonassoc "="

Shift-reduce conflicts can be automatically resolved
using precedence rules.

Operators in the same rule have the same priority
(e.g., PLUS, MINUS).

Operators in an earlier rule have higher priority (e.g.
TIMES has higher prio than PLUS.)

30

In assignment 2, you should NOT use precedence rules.
Instead, rewrite the grammar to use Term and Factor, etc.

How the precedence rules work
A rule is given the priority and associativity of its rightmost token.

E -> E • + E ,?
E -> E * E • ,+

For two conflicting rules with different priority, the rule with the highest priority is
chosen:

E -> E • * E ,?
E -> E + E • ,*

31

How the precedence rules work
A rule is given the priority and associativity of its rightmost token.

E -> E • + E ,?
E -> E * E • ,+

For two conflicting rules with different priority, the rule with the highest priority is
chosen:

E -> E • * E ,?
E -> E + E • ,*

Reduce is chosen Shift is chosen

E -> E + E • ,+
E -> E • + E ,?

Two conflicting rules with the same priority have the same associativity.
Left-associativity favors reduce.
Right-associativity favors shift.
Non-associativity removes both rules from the table (input following that pattern will
cause a parse error).

E -> E ** E • ,**
E -> E • ** E ,?

E -> E == E • ,==
E -> E • == E ,?

32

How the precedence rules work
A rule is given the priority and associativity of its rightmost token.

E -> E • + E ,?
E -> E * E • ,+

For two conflicting rules with different priority, the rule with the highest priority is
chosen:

E -> E • * E ,?
E -> E + E • ,*

Reduce is chosen Shift is chosen

E -> E + E • ,+
E -> E • + E ,?

Two conflicting rules with the same priority have the same associativity.
Left-associativity favors reduce.
Right-associativity favors shift.
Non-associativity removes both rules from the table (input following that pattern will
cause a parse error).

E -> E ** E • ,**
E -> E • ** E ,?

E -> E == E • ,==
E -> E • == E ,?

Reduce is chosen Shift is chosen No rule is chosen 33

Different variants of LR(k) parsers

Type Characteristics

LR(0)

SLR
Simple LR

LALR(1)

used in practice

LR(1)

LR(k)

GLR

34

Different variants of LR(k) parsers

Type Characteristics

LR(0) LR items without lookahead.
Not very useful in practice.

SLR
Simple LR

Look at the FOLLOW set to decide where to put reduce
actions.

Can parse some useful grammars.

LALR(1)

used in practice

Merges states that have the same LR items,
but different lookaheads (LA).

Leads to much smaller tables than LR(1).
Used by most well known tools:

Yacc, CUP, Beaver, SableCC, ...
Sufficient for most practical parsing problems.

LR(1) Slightly more powerful than LALR(1).
Not used in practice – the tables become very large.

LR(k) Much too large tables for k>1

GLR Can handle arbitrary CFG, also ambiguous. Uses LR(1) table.
Produces parse forest. Slow: O(n3) (n – length of input)

35

Different variants of LR parsers

Ambiguous

Unambiguous

All context-free grammars

LR(1)

LR(0)
SLR

LALR(1)

LR(k)

GLR

36

37

Universal parsing algorithms

GLR – Generalized LR

Can parse any context free grammar.

Including ambiguous grammars!

Returns a parse forest (all possible parse trees).
Additional mechanism needed to select which of the trees to use.

Can parse grammars with shift-reduce and reduce-reduce conflicts (spawns
parallel parsers).

Has O(n3) worst-case time complexity, in the length of the input (n).

Is often much better than that in practice. But still slower than LALR.

Used in several research systems.

There is a recent universal LL algorithm as well: GLL (from 2010). Also O(n3) .
38

Some well-known parser generators

Name Type, host language, license

JavaCC LL(1), Java, supports longer local lookahead, BSD

ANTLR Adaptive LL(*), Java (also earlier versions for C, C#, ...), BSD

yacc LALR(1), C, "yet another compiler compiler"
Developed for AT&T Unix in 1970. GNU GPL

bison LALR(1), GLR, C++, GNU GPL

CUP LALR(1), Java, BSD-like

beaver/neobeaver LALR(1), Java, BSD

SDF/SGLR Scannerless GLR, C, Java, BSD

For more examples, see
http://en.wikipedia.org/wiki/Comparison_of_parser_generators

39

40

Parsing Expression Grammars (PEGs)

Look like CFGs, but productions are ordered
Always unambiguous (gives priority to first alternative)

ifstmt -> "if" "(" expr ")" stmt "else" stmt
 | "if" "(" expr ")" stmt

PEG (ordered productions)
Unambiguous!

ifstmt -> "if" "(" expr ")" stmt "else" stmt
 | "if" "(" expr ")" stmt

CFG (unordered productions)
Ambiguous!

Will match if-statements in the desired way!

41

Parsing Expression Grammars (PEGs)

Look like CFGs, but productions are ordered
Always unambiguous (gives priority to first alternative)

ifstmt -> "if" "(" expr ")" stmt "else" stmt
 | "if" "(" expr ")" stmt

PEG (ordered productions)
Unambiguous!

ifstmt -> "if" "(" expr ")" stmt "else" stmt
 | "if" "(" expr ")" stmt

CFG (unordered productions)
Ambiguous!

Will match if-statements in the desired way!

ifstmt -> "if" "(" expr ")" stmt
 | "if" "(" expr ")" stmt "else" stmt

Equivalent CFG
Also ambiguous!

ifstmt -> "if" "(" expr ")" stmt
 | "if" "(" expr ")" stmt "else" stmt

Not equivalent PEG
Also unambiguous!

Will not match if-then-else statements

42

Implementation of PEGs

Implementation similar to recursive-descent
Unlimited lookahead
Backtracks (tries the next alternative) if an alternative is not successful
Typically does not allow left recursion (but supports EBNF)

Straightforward implementation is exponential
"Packrat" implementation is linear by using memoization (caching of function call
results), but uses more memory, proportional to input

Often implemented using parser combinators – higher-order functions that
combine subparsers.
Parser combinator libraries are alternatives to using parser generators.

Summary questions: LR parsing

• How does LR differ from LL parsers?
• What does it mean to shift?
• What does it mean to reduce?
• Explain how LR parsing works on an example.
• What is an LR item?
• What does an LR state consist of?
• What does it mean to take the closure of a set of LR items?
• What do the edges in an LR DFA represent?
• How can an LR table be constructed from an LR DFA?
• How is the LR table used for parsing?
• What is meant by a shift-reduce conflict and a reduce-reduce conflict?
• How can such a conflict be analyzed?
• How can precedence rules be used in an LR parser?
• What is LR(0) and SLR parsing?
• What is the difference between LALR(1) and LR(1)?
• Explain why the LALR(1) algorithm is most commonly used in parser generators.
• What is a GLR parser?

43

