EDAN65: Compilers, Lecture 05 A LL parsing Nullable, FIRST, and FOLLOW

Görel Hedin
Revised: 2023-09-05

Algorithm for constructing an LL(1) parser

Fairly simple. The non-trivial part:
how to select the correct production p for X , based on the lookahead token.

```
p1: X -> ...
p2: X -> ...
```


Algorithm for constructing an LL(1) parser

Fairly simple. The non-trivial part:
how to select the correct production p for X, based on the lookahead token.

```
p1: X -> ...
p2: X -> ...
```


- Which tokens can occur in the FIRST position?
- Can one of the productions derive the empty string? I.e., is it "Nullable"?
- If it is Nullable, which tokens can occur in the FOLLOW position?

Steps in constructing an LL(1) parser

1. Write the grammar on canonical form
2. Compute Nullable, FIRST, and FOLLOW.
3. Use them to construct a table. It shows what production to select, given the current lookahead token.
4. Conflicts in the table? The grammar is not $\operatorname{LL}(1)$.
5. No conflicts? Straightforward implementation using table-driven parser or recursive descent.

	t_{1}	t_{2}	t_{3}	\mathbf{t}_{4}
$\mathbf{X}_{\mathbf{1}}$	p 1	p 2		
$\mathbf{X}_{\mathbf{2}}$		p 3	p 3	p 4

Example:

Construct the $\mathrm{LL}(1)$ table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> \varepsilon
```

	ID	"="	";"	"\{"	"\}"
statement					
assignment					
compoundStmt					
statements					

Example:

Construct the $\mathrm{LL}(1)$ table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> \varepsilon
```

	ID	"="	";"	"\{"	"\}"
statement assignment					
compoundStmt					
statements					

For each production $\mathrm{p}: \mathrm{X}->\gamma$, we are interested in:
FIRST (γ) - the tokens that occur first in a sentence derived from γ.
Nullable (γ) - is it possible to derive ε from γ ? And if so:
FOLLOW(X) - the tokens that can occur immediately after an X-sentence.

Example:

Construct the $\mathrm{LL}(1)$ table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> \varepsilon
```

	ID	"="	";"	"\{"	"\}"
statement					
assignment					
compoundStmt					
statements					

To construct the table, look at each production $\mathrm{p}: \mathrm{X}->\gamma$.
Compute the token set $\operatorname{FIRST}(\gamma)$. Add p to each corresponding entry for X . Then, check if γ is Nullable. If so, compute the token set FOLLOW(X), and add p to each corresponding entry for X.

Example:

Construct the $\mathrm{LL}(1)$ table for this grammar:

```
p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> &
```

	ID	"="	";"	"\{"	"\}"
statement	p1			p2	
assignment	p3				
compoundStmt				p4	
statements	p5			p5	p6

To construct the table, look at each production $\mathrm{p}: \mathrm{X}->\gamma$.
Compute the token set $\operatorname{FIRST}(\gamma)$. Add p to each corresponding entry for X. Then, check if γ is Nullable. If so, compute the token set FOLLOW(X), and add p to each corresponding entry for X.

Example:
 Dealing with End of File:

```
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optlnit -> "=" INT
p5: optInit -> &
```

	ID	integer	boolean	"="	";"	INT	
varDecl							
type							
optInit							

Example:

Dealing with End of File:

```
p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optlnit -> "=" INT
p5: optInit -> \varepsilon
```

	ID	integer	boolean	"="	";"	INT	\$
S							
varDecl							
type							
optInit							

Example:

Dealing with End of File:

```
p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optlnit -> "=" INT
p5: optInit -> \varepsilon
```

	ID	integer	boolean	"="	";"	INT	\$
S		p 0	p 0				
varDecl		p 1	p 1				
type		p 2	p 3				
optInit				p 4			p 5

Example:

Ambiguous grammar:

```
p1: E -> E "+" E
p2: E -> ID
p3: E -> INT
```

	"+"	ID
E		

Example:

Ambiguous grammar:

```
p1: E -> E "+" E
p2: E -> ID
p3: E -> INT
```

	$"+"$	ID	INT
E		$p 1, p 2$	$p 1, p 3$

Collision in a table entry!
The grammar is not $\mathrm{LL}(1)$

An ambiguous grammar is not even LL(k) adding more lookahead does not help.

Example:

Unambiguous, but left-recursive grammar:

Example:

Unambiguous, but left-recursive grammar:

$$
\begin{aligned}
& \text { p1: E -> E "*" F } \\
& \text { p2: E -> F } \\
& \text { p3: F -> ID } \\
& \text { p4: F -> INT }
\end{aligned}
$$

	"*"	ID	INT
E		$\mathrm{p} 1, \mathrm{p} 2$	$\mathrm{p} 1, \mathrm{p} 2$
F		p 3	p 4

Collision in a table entry!
The grammar is not $\mathrm{LL}(1)$

A grammar with left-recursion is not even $\operatorname{LL}(k)$ adding more lookahead does not help.

Example:

Grammar with common prefix:

$$
\begin{aligned}
& \text { p1: E -> F "*" E } \\
& \text { p2: E -> F } \\
& \text { p3: F -> ID } \\
& \text { p4: F -> INT } \\
& \text { p5: F -> "(" E ")" }
\end{aligned}
$$

	"*"	ID	INT	"("
E				
F				

Example:
 Grammar with common prefix:

```
p1: E -> F "*" E
p2: E -> F
p3: F -> ID
p4: F -> INT
p5: F -> "(" E ")"
```

	"*"	ID	INT	"("	")"
E		p1,p2	p1,p2	p1,p2	
F		p3	p4	p5	

Collision in a table entry!
The grammar is not $\mathrm{LL}(1)$
A grammar with common prefix is not $\mathrm{LL}(1)$.
Some grammars with common prefix are LL(k), for some k, but not this one.

Summary: constructing an LL(1) parser

1. Write the grammar on canonical form
2. Compute Nullable, FIRST, and FOLLOW.
3. Use them to construct a table. It shows what production to select, given the current lookahead token.
4. Conflicts in the table? The grammar is not $\mathrm{LL}(1)$.
5. No conflicts? Straight forward implementation using table-driven parser or recursive descent.

Algorithm for constructing an $\operatorname{LL}(1)$ table

initialize all entries table $\left[\mathrm{X}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right]$ to the empty set.
for each production $\mathrm{p}: \mathrm{X}$-> γ for each $t \in \operatorname{FIRST}(\gamma)$ add p to table[$\mathrm{X}, \mathrm{t}]$
if Nullable (γ) for each $t \in \operatorname{FOLLOW}(X)$ add p to table[X, t]

	t_{1}	t_{2}	$\mathrm{t}_{\mathbf{3}}$	t_{4}
$\mathbf{X}_{\mathbf{1}}$	p 1	p 2		
$\mathbf{X}_{\mathbf{2}}$		p 3	p 3	p 4

If some entry has more than one element, then the grammar is not LL(1).

Exercise: what is Nullable(X)?

$Z->d$
$Z->X Y Z$
$Y->\varepsilon$
$Y->c$
$X->Y$
$X->a$

	Nullable
\mathbf{X}	
\mathbf{Y}	
Z	

Solution: what is Nullable(X)

$Z->d$
$Z->X Y Z$
$Y->\varepsilon$
$Y->c$
$X \rightarrow Y$
$X \rightarrow a$

	Nullable
\mathbf{X}	true
\mathbf{Y}	true
\mathbf{Z}	false

$X=>Y=>\varepsilon$	yes, X is Nullable
$Y=>\varepsilon$	yes, Y is Nullable
$Z=>X Y Z ~=>Y Y Z ~=>* Z ~=>X Y Z ~ \ldots$	no, Z is not Nullable, we cannot derive ε

Definition of Nullable

Definition of Nullable

Definition

Nullable (γ) is true iff the empty sequence can be derived from γ, i.e., iff there exists a derivation $\gamma=>* \varepsilon$
(γ is a sequence of terminals and nonterminals)

Definition of Nullable

```
    Definition
Nullable(\gamma) is true iff the empty sequence can be derived from }\gamma\mathrm{ , i.e.,
    iff there exists a derivation }\gamma=>*
( 
```

```
    Do case analysis to get equation system for Nullable, given \(G=(N, T, P, S)\)
Nullable( \(\varepsilon\) ) == true
Nullable( t ) == false
    where \(t \in T\), i.e., \(t\) is a terminal symbol
Nullable \((X)==\operatorname{Nullable}\left(\gamma_{1}\right)| | \ldots| | N u l l a b l e ~\left(\gamma_{n}\right)\)
    where X -> \(\gamma_{1}, \ldots \mathrm{X}\)-> \(\gamma_{\mathrm{n}}\) are all the productions for X in P
Nullable( \(s \alpha\) ) \(==\) Nullable ( \(s\) ) \& \& Nullable ( \(\alpha\) )
    where \(s \in N U T\), i.e., \(s\) is a nonterminal or a terminal and \(\alpha\) is the rest of the sequence
```

The equations for Nullable are recursive. How would you write a program that computes Nullable (X)? Just using recursive functions could lead to nontermination!

Fixed-point problems

Fixed-point problems

Computing Nullable (X) is an example of a fixed-point problem.

These problems have the form:
$x==f(x)$
Can we find a value x for which the equation holds (i.e., a solution)? x is then called a fixed point of the function f .

Fixed-point problems can (sometimes) be solved using iteration:
Guess an initial value x_{0}, then apply the function iteratively, until the fixed point is reached:
$\mathrm{x}_{1}:=\mathrm{f}\left(\mathrm{x}_{0}\right) ;$
$\mathrm{x}_{2}:=\mathrm{f}\left(\mathrm{x}_{1}\right)$;
$x_{n}:=f\left(x_{n-1}\right) ;$
until $x_{n}=x_{n-1}$

This is called a fixed-point iteration, and x_{n} is the fixed point.

Implement Nullable by a fixed-point iteration

Implement Nullable by a fixed-point iteration

```
represent Nullable as an array nlb|[ ] of boolean variables
initialize all n|b|[X] to false
repeat
    changed = false
    for each nonterminal }X\mathrm{ with productions }X -> \mp@subsup{\gamma}{1}{},\ldots,X X -> 的 do
    newValue = nlb| (\gamma, ) || ... || nlb|(\gamman)
    if newValue != nlbl[x] then
        nlbl[X] = newValue
        changed = true
    fi
do
until !changed
where n|bl(\gamma) is computed using the current values in nlbl[ ].
```


Implement Nullable by a fixed-point iteration

```
represent Nullable as an array nlb|[ ] of boolean variables
initialize all nlbl[X] to false
repeat
    changed = false
    for each nonterminal }X\mathrm{ with productions }X -> \mp@subsup{\gamma}{1}{},\ldots,X X -> 的 do
    newValue = n|b| (}\mp@subsup{\gamma}{1}{})||\ldots|| n|b|(\mp@subsup{\gamma}{n}{}
    if newValue != nlbl[x] then
        nlb|[X] = newValue
        changed = true
    fi
do
until !changed
where nlbl(\gamma) is computed using the current values in nlbl[ ].
```

```
The computation will terminate because
- the variables are only changed monotonically (from false to true)
- the number of possible changes is finite (from all false to all true)
```


Exercise: compute Nullable(X)

$Z->d$
$Z->X Y Z$
$Y \rightarrow \varepsilon$
$Y->c$
$X \rightarrow Y$
$X->a$

	iter $_{0}$	iter $_{1}$	iter $_{2}$	iter $_{3}$
X	f			
Y	f			
Z	f			

In each iteration, compute:


```
    newValue = nlbl(
```

where $\mathrm{nlbl}(\gamma)$ is computed using the current values in nlbl[].

Solution: compute Nullable(X)

$Z->d$
$Z->X Y Z$
$Y->\varepsilon$
$Y->c$
$X \rightarrow Y$
$X \rightarrow a$

| n\|b|[] | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | iter $_{\mathbf{0}}$ | iter $_{1}$ | iter $_{\mathbf{2}}$ | iter $_{\mathbf{3}}$ |
| \mathbf{X} | f | f | t | t |
| \mathbf{Y} | f | t | t | t |
| \mathbf{Z} | f | f | f | f |

In each iteration, compute:

```
for each nonterminal }X\mathrm{ with productions }X -> \mp@subsup{\gamma}{1}{},\ldots,X X > / , n
    newValue = nlbl(
```

where $\mathrm{nlbl}(\gamma)$ is computed using the current values in nlbl[].

Definition of FIRST

Definition of FIRST

FIRST (γ) is the set of tokens that can occur first in sentences derived from γ : FIRST $(\gamma)=\left\{\mathrm{t} \in \mathrm{T} \mid \gamma=>^{*} \mathrm{t} \delta\right\}$

Definition of FIRST

FIRST (γ) is the set of tokens that can occur first in sentences derived from γ : $\operatorname{FIRST}(\gamma)=\left\{\mathrm{t} \in \mathrm{T} \mid \gamma=>^{*} \mathrm{t} \delta\right\}$

```
            Do case analysis to get equation system for FIRST, given G=(N,T,P,S)
FIRST(\varepsilon)== \emptyset
FIRST(t)== { t }
    where t\inT, i.e., t is a terminal symbol
FIRST(X) == FIRST ( }\mp@subsup{\gamma}{1}{\prime}\mathrm{ ) U ... U FIRST( }\mp@subsup{\gamma}{n}{\prime}
    where X -> }\mp@subsup{\gamma}{1}{},\ldots.X -> \mp@subsup{\gamma}{n}{}\mathrm{ are all the productions for X in P
FIRST(s \alpha ) == FIRST(s) U (if Nullable(s) then FIRST( }\alpha)\mathrm{ else }\emptyset\mathrm{ fi)
    where s\inNUT, i.e., s is a nonterminal or a terminal
    and \alpha is the rest of the sequence
```

 The equations for FIRST are recursive.
 Compute using fixed-point iteration.

Implement FIRST by a fixed-point iteration

Implement FIRST by a fixed-point iteration

```
represent FIRST as an array FIRST[ ] of token sets
initialize all FIRST[X] to the empty set
repeat
    changed = false
    for each nonterminal }X\mathrm{ with productions }X -> \mp@subsup{\gamma}{1}{},\ldots,X -> 滔 do
    newValue = FIRST ( }\mp@subsup{\gamma}{1}{})\cup\ldots\cup\operatorname{FIRST}(\mp@subsup{\gamma}{n}{}
    if newValue != FIRST[X] then
        FIRST[X] = newValue
        changed = true
    fi
do
until !changed
where FIRST ( }\gamma)\mathrm{ is computed using the current values in FIRST[ ].
```


Implement FIRST by a fixed-point iteration

```
represent FIRST as an array FIRST[ ] of token sets
initialize all FIRST[X] to the empty set
repeat
    changed = false
    for each nonterminal }X\mathrm{ with productions }X->\mp@subsup{\gamma}{1}{},\ldots,X X >> \mp@subsup{\gamma}{n}{}\mathrm{ do
    newValue = FIRST ( }\mp@subsup{\gamma}{1}{})\cup\ldots..\cup \cupIRST( (\gamman
    if newValue != FIRST[X] then
        FIRST[X] = newValue
        changed = true
    fi
do
until !changed
where FIRST(\gamma) is computed using the current values in FIRST[ ].
```

The computation will terminate because

- the variables are changed monotonically (using set union)
- the largest possible set is finite: T , the set of all tokens
- the number of possible changes is therefore finite

Solution: compute FIRST(X)

$$
\begin{aligned}
& Z->d \\
& Z->X Y Z \\
& Y->\varepsilon \\
& Y->c \\
& X->Y \\
& X->a
\end{aligned}
$$

	Nullable
\mathbf{X}	t
\mathbf{Y}	t
\mathbf{Z}	f

FIRST[]

	iter $_{\mathbf{0}}$	iter $_{1}$	iter $_{\mathbf{2}}$	iter $_{\mathbf{3}}$
\mathbf{X}	\emptyset			
\mathbf{Y}	\emptyset			
\mathbf{Z}	\emptyset			

In each iteration, compute:


```
    newValue = FIRST ( }\mp@subsup{\gamma}{1}{})\cup\ldots\cup\cup \IRST ( ( % )
```

where $\operatorname{FIRST}(\gamma)$ is computed using the current values in FIRST[].

Exercise: compute FIRST(X)

$$
\begin{aligned}
& Z->d \\
& Z->X Y Z \\
& Y->\varepsilon \\
& Y->c \\
& X->Y \\
& X->a
\end{aligned}
$$

	Nullable
\mathbf{X}	t
\mathbf{Y}	t
\mathbf{Z}	f

FIRST[]

	iter $_{\mathbf{0}}$	iter $_{\mathbf{1}}$	iter $_{\mathbf{2}}$	iter $_{\mathbf{3}}$
\mathbf{X}	\emptyset	$\{a\}$	$\{a, c\}$	$\{a, c\}$
\mathbf{Y}	\emptyset	$\{c\}$	$\{c\}$	$\{c\}$
\mathbf{Z}	\emptyset	$\{a, c, d\}$	$\{a, c, d\}$	$\{a, c, d\}$

In each iteration, compute:

```
for each nonterminal X with productions X -> }\mp@subsup{\gamma}{1}{},\ldots,X -> \mp@subsup{\gamma}{n}{
    newValue = FIRST ( }\mp@subsup{\gamma}{1}{})\cup\ldots\cup\operatorname{FIRST}(\mp@subsup{\gamma}{n}{}
```

where $\operatorname{FIRST}(\gamma)$ is computed using the current values in FIRST[].

Definition of FOLLOW

Definition of FOLLOW

FOLLOW (X) is the set of tokens that can occur as the first token following X, in any sentential form derived from the start symbol S :

FOLLOW $(X)=\left\{t \in T \mid S=>^{*} \alpha X t \beta\right\}$

Definition of FOLLOW

FOLLOW (X) is the set of tokens that can occur as the first token following X, in any sentential form derived from the start symbol S :
$\operatorname{FOLLOW}(X)=\left\{t \in T \mid S=>^{*} \alpha X t \beta\right\}$
The nonterminal X occurs in the right-hand side of a number of productions.

Let $\mathrm{Y}->\gamma \mathrm{X} \delta$ denote such an occurrence, where γ and δ are arbitrary sequences of terminals and nonterminals.

Equation system for FOLLOW, given $G=(N, T, P, S)$
$\operatorname{FOLLOW}(\mathrm{X})==\bigcup$ FOLLOW $(\mathrm{Y}->\gamma \underline{X} \delta)$,
over all occurrences $Y->\gamma X \delta$
and where
FOLLOW $(\mathrm{Y}->\gamma \underline{X} \delta)==$
FIRST $(\delta) \cup$ (if Nullable(δ) then FOLLOW (Y) else \varnothing fi)

The equations for FOLLOW are recursive.
Compute using fixed-point iteration.

Implement FOLLOW by a fixed-point iteration

Implement FOLLOW by a fixed-point iteration

```
represent FOLLOW as an array FOLLOW[ ] of token sets
initialize all FOLLOW[X] to the empty set
repeat
    changed = false
    for each nonterminal X do
        newValue == U FOLLOW(Y -> 
        if newValue!= FOLLOW[X] then
        FOLLOW[X] = newValue
        changed = true
    fi
do
until !changed
where FOLLOW(Y -> \gamma\underline{X}\delta) is computed using the current values in FOLLOW[ ].
```


Implement FOLLOW by a fixed-point iteration

```
represent FOLLOW as an array FOLLOW[ ] of token sets
initialize all FOLLOW[X] to the empty set
repeat
    changed = false
    for each nonterminal X do
        newValue == U FOLLOW(Y -> \gamma\underline{X}\delta), for each occurrence Y -> \gamma X \delta
        if newValue != FOLLOW[X] then
        FOLLOW[X] = newValue
        changed = true
    fi
do
until !changed
where FOLLOW(Y -> \gamma\underline{X}\delta) is computed using the current values in FOLLOW[ ].
```

Again, the computation will terminate because

- the variables are changed monotonically (using set union)
- the largest possible set is finite: T

Exercise: compute FOLLOW(X)

$$
\begin{aligned}
& S->Z \$ \\
& Z->d \\
& Z->X Y Z \\
& Y->\varepsilon \\
& Y->c \\
& X->Y \\
& X->a
\end{aligned}
$$

The grammar has been extended with end of file, \$.

	Nullable	FIRST
\mathbf{X}	t	$\{\mathrm{a}, \mathrm{c}\}$
\mathbf{Y}	t	$\{\mathrm{c}\}$
\mathbf{Z}	f	$\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$

	iter $_{\mathbf{0}}$	iter $_{\mathbf{1}}$	iter $_{\mathbf{2}}$	iter $_{\mathbf{3}}$
\mathbf{X}	\emptyset			
\mathbf{Y}	\emptyset			
\mathbf{Z}	\emptyset			

In each iteration, compute:
newValue $==\bigcup$ FOLLOW $(Y->\gamma \underline{X} \delta)$, for each occurrence $Y->\gamma X \delta$
where $\operatorname{FOLLOW}(\mathrm{Y}->\gamma \underline{X} \delta)$ is computed using the current values in FOLLOW[].

Solution: compute FOLLOW(X)

$$
\begin{aligned}
& S->Z \$ \\
& Z->d \\
& Z->X Y Z \\
& Y->\varepsilon \\
& Y->c \\
& X->Y \\
& X->a
\end{aligned}
$$

	Nullable	FIRST
\mathbf{X}	t	$\{\mathrm{a}, \mathrm{c}\}$
\mathbf{Y}	t	$\{\mathrm{c}\}$
\mathbf{Z}	f	$\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$

	iter $_{\mathbf{0}}$	iter $_{\mathbf{1}}$	iter $_{\mathbf{2}}$	iter $_{\mathbf{3}}$
\mathbf{X}	\emptyset	$\{a, c, d\}$	$\{a, c, d\}$	
\mathbf{Y}	\emptyset	$\{a, c, d\}$	$\{a, c, d\}$	
\mathbf{Z}	\emptyset	$\{\$\}$	$\{\$\}$	

In each iteration, compute:

```
newValue == U FOLLOW (Y -> \gamma\underline{X}\delta), for each occurrence Y -> \gamma X \delta
```

where $\operatorname{FOLLOW}(\mathrm{Y}->\gamma \underline{X} \delta)$ is computed using the current values in FOLLOW[].

Summary questions

- Construct an LL(1) table for a grammar.
- What does it mean if there is a collision in an $\mathrm{LL}(1)$ table?
- Why can it be useful to add an end-of-file rule to some grammars?
- How can we decide if a grammar is $\mathrm{LL}(1)$ or not?
- What is the definition of Nullable, FIRST, and FOLLOW?
- What is a fixed-point problem?
- How can it be solved using iteration?
- How can we know that the computation terminates?

