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Analyzing program text
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AssignStmt

Exp

Add

Exp Exp

ID    EQ    ID  PLUS  ID  SEMI
program text

tokens

parse tree

sum    =    sum    +    k    ; \n

non-tokens (like white space) are discarded



Recall: Generating the compiler:

Semantic analyzer

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular 
expressions

Scanner generator
JFlex

Context-free 
grammar

Parser generator
Beaver

Attribute 
grammar

Attribute evaluator
generator

We will use a parser generator called Beaver
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tokens

text

tree
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Context-Free Grammars



Regular Expressions vs Context-Free Grammars
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An RE can have iteration

A CFG can also have recursion
(it is possible to derive a symbol, e.g., Stmt, from itself)

Example REs:
WHILE = "while"
ID = [a-z][a-z0-9]*
LPAR = "("
RPAR = ")"
PLUS = "+"
...

Example CFG:
Stmt –> WhileStmt
Stmt –> AssignStmt
WhileStmt –> WHILE LPAR Exp RPAR Stmt
Exp –> ID
Exp –> Exp PLUS Exp
...



Elements of a Context-Free Grammar
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Production rules:
X –> s1 s2 … sn
where sk is a symbol (terminal or nonterminal), n >= 0

Nonterminal symbols

Terminal symbols (tokens)

Start symbol
(one of the nonterminals, usually the left-hand side of the first production)

Example CFG:
Stmt –> WhileStmt
Stmt –> AssignStmt
WhileStmt –> WHILE LPAR Exp RPAR Stmt
AssignStmt –> ID EQ Exp SEMIC
…



Shorthand for alternatives
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Stmt –> WhileStmt
Stmt –> AssignStmt

Stmt –> WhileStmt | AssignStmt

is equivalent to



Shorthand for repetition
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Stmt*

StmtList –> e  | Stmt StmtList

is equivalent to

StmtList

where



Exercise
Construct a grammar covering this program and similar ones:
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Example program:
while (k <= n) {sum = sum + k; k = k+1;} 



Solution
Construct a grammar covering this program and similar ones:
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CFG:
Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp

Example program:
while (k <= n) {sum = sum + k; k = k+1;} 

(Often, simple tokens are written directly as text strings)



Parsing
Use the grammar to derive a 
tree for a program (top-down):

12sum  =  sum  +  k  ;

Stmt Start symbol

Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp



Parsing
Use the grammar to derive a 
tree for a program (bottom-up):

13sum  =  sum  +  k  ;

Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp



Parsing
Use the grammar to derive 
a tree for a program:

14sum  =  sum  +  k  ;

Stmt Start symbol

Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp

sum  =  sum  +  k  ;

AssignStmt

Exp

Add

Exp Exp

Nonterminals are 
inner nodes

Terminals are leaves

A parse tree includes all 
the input tokens as leaves.



Corresponding abstract syntax tree
(will be discussed in later lecture) 
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sum     sum    k

AssignStmt 

Add

IdExp IdExpIdExp

An abstract syntax tree is similar 
to a parse tree, but simpler.

It includes only some of the 
tokens.

(Tokens that could be generated 
from the tree are excluded.)



EBNF vs Canonical Form
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EBNF:
Stmt –> AssignStmt | Block
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> Add | ID
Add –> Exp "+" Exp

Canonical form:
Stmt –> ID "=" Exp ";"
Stmt –> "{" Stmts "}"
Stmts –> e
Stmts –> Stmt Stmts
Exp –> Exp "+" Exp
Exp –> ID

(Extended) Backus-Naur Form:
• Compact, easy to read and write
• BNF has alternatives
• EBNF has additionally repetition, 

optionals, parentheses (like REs)
• Common notation for practical use

Canonical form:
• Core formalism for CFGs
• Useful for proving properties and 

explaining algorithms



Real world example:
The Java Language Specification
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See https://docs.oracle.com/javase/specs/jls/se11/html
• See Chapter 2 about the Java grammar notation.
• See Chapter 19 for the full syntax

OrdinaryCompilationUnit:
   [PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

PackageDeclaration:
   {PackageModifier} package Identifier {. Identifier} ;

PackageModifier:
   Annotation

…
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Formal definition of CFGs



Formal definition of CFGs (canonical form)
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A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
          X –> Y1 Y2 … Yn 
      where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N



Formal definition of CFGs (canonical form)
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A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
          X –> Y1 Y2 … Yn 
      where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N

So, the left-hand side X of a rule is a nonterminal.

And the right-hand side Y1 Y2 … Yn is a sequence of nonterminals 
and terminals.

If the rhs for a production is empty, i.e., n = 0, we write
          X –> e



A grammar G defines a language L(G)
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A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
          X –> Y1 Y2 … Yn 
      where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N



A grammar G defines a language L(G)
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A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
          X –> Y1 Y2 … Yn 
      where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N

G defines a language L(G) over the alphabet T

T* is the set of all possible sequences of T symbols.

L(G) is the subset of T* that can be derived from the start symbol 
S, by following the production rules P.



Exercise
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G = (N, T, P, S)

P = {
  Stmt –> ID "=" Exp ";",
  Stmt –> "{" Stmts "}" ,
  Stmts –> e ,
  Stmts –> Stmt Stmts ,
  Exp –> Exp "+" Exp ,
  Exp –> ID
}

N =

T =

S =                         

L(G) =



Solution
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G = (N, T, P, S)

P = {
  Stmt –> ID "=" Exp ";",
  Stmt –> "{" Stmts "}" ,
  Stmts –> e ,
  Stmts –> Stmt Stmts ,
  Exp –> Exp "+" Exp ,
  Exp –> ID
}

N = {Stmt, Exp, Stmts}

T = {ID, "=", "{", "}", ";", "+"}

S = Stmt

L(G) = {
 "{" "}",
 "{" "{" "}" "}",
 ID "=" ID ";",
 "{" ID "=" ID ";" "}",
 ID "=" ID "+" ID ";",
 "{" "{" "}" "{" "}" "}",
 "{" "{" "{" "}" "}" "}",
 "{" ID "=" ID "+" ID ";" "}",
 ID "=" ID "+" ID "+" ID ";",
 ...
  

}

The sequences in L(G) are usually called sentences or strings
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Derivations



Derivation step
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If we have a sequence of terminals and nonterminals, e.g., 

   X a Y Y b

we can replace one of the nonterminals, applying a production 
rule. This is called a derivation step. 
(Swedish: Härledningssteg)



Derivation step
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If we have a sequence of terminals and nonterminals, e.g., 

   X a Y Y b

we can replace one of the nonterminals, applying a production 
rule. This is called a derivation step. 
(Swedish: Härledningssteg)

Suppose there is a production

   Y –> X a

and we apply it for the first Y in the sequence. We write the 
derivation step as follows:

  X a Y Y b => X a X a Y b



Derivation
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A derivation, is simply a sequence of derivation steps, e.g.: 

   g0 => g1 => … => gn          (n ≥ 0) 

where each gi is a sequence of terminals and nonterminals

If there is a derivation from g0 to gn, we can write this as

   g0 =>* gn

So this means it is possible to get from the sequence g0 to the 
sequence gn by applying 0 or more production rules.



Definition of the language L(G)
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Recall that:

    G = (N, T, P, S)

    T* is the set of all possible sequences of T symbols.

    L(G) is the subset of T* that can be derived from the 
    start symbol S, by applying production rules in P.



Definition of the language L(G)
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Recall that:

    G = (N, T, P, S)

    T* is the set of all possible sequences of T symbols.

    L(G) is the subset of T* that can be derived from the 
    start symbol S, by applying production rules in P.

Using the concept of derivations, we can formally define L(G) as follows:

  L(G) = { w ∈ T* | S =>* w }



Exercise:
Prove that a sentence belongs to a language
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Prove that

   INT + INT * INT

belongs to the language of the following 
grammar:

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT

Proof:



Solution:
Prove that a sentence belongs to a language
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Proof:
(by showing all the derivation steps from the start symbol Exp)

Exp
=>p1 Exp "+" Exp 
=>p3 INT "+" Exp 
=>p2 INT "+" Exp "*" Exp 
=>p3 INT "+" INT "*" Exp 
=>p3 INT "+" INT "*" INT 

Prove that

   INT + INT * INT

belongs to the language of the following 
grammar:

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT



Leftmost and rightmost derivations
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In a leftmost derivation, the 
leftmost nonterminal is replaced 
in each derivation step, e.g.,:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT



Leftmost and rightmost derivations
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In a leftmost derivation, the 
leftmost nonterminal is replaced 
in each derivation step, e.g.,:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

LL parsing algorithms use leftmost derivation.
LR parsing algorithms use rightmost derivation.
Will be discussed in later lectures.

In a rightmost derivation, the 
rightmost nonterminal is replaced in 
each derivation step, e.g.,:

Exp =>
Exp "+" Exp =>
Exp "+" Exp "*" Exp =>
Exp "+" Exp "*" INT =>
Exp "+" INT "*" INT =>
INT "+" INT "*" INT

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT



A derivation corresponds to building a parse tree
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Grammar:
   Exp –> Exp "+" Exp
   Exp –> Exp "*" Exp
   Exp –> INT

Example derivation:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exercise: draw the parse tree
(also called derivation tree).



A derivation corresponds to building a parse tree
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Grammar:
   Exp –> Exp "+" Exp
   Exp –> Exp "*" Exp
   Exp –> INT

Example derivation:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Parse tree (derivation tree):

Exp 

Exp Exp 

Exp Exp 

"+"

INT
"*"

INT INT
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Ambiguities



Exercise:
Can we do another derivation of the same sentence,

that gives a different parse tree?
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Exp –> Exp "+" Exp
   Exp –> Exp "*" Exp
   Exp –> INT

One derivation and parse tree

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exp 

Exp Exp 

Exp Exp 

"+"

INT
"*"

INT INT

Other derivation that gives different 
parse tree



Solution:
Can we do another derivation of the same sentence,

that gives a different parse tree?
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Exp –> Exp "+" Exp
   Exp –> Exp "*" Exp
   Exp –> INT

One derivation and parse tree

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exp 

Exp Exp 

Exp Exp 

"+"

INT
"*"

INT INT

Other derivation that gives different 
parse tree
Exp =>
Exp "*" Exp =>
Exp "+" Exp "*" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exp 

Exp "*"

INT

Exp 

Exp Exp "+"

INT INT

Which parse tree would we prefer?



Ambiguous context-free grammars
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A CFG is ambiguous if a sentence in the language can be 
derived by two (or more) different parse trees.

A CFG is unambiguous if each sentence in the language can 
be derived by only one parse tree.

(Swedish: tvetydig, otvetydig)

Note! There can be many different derivations that give the 
same parse tree.



How can we know if a CFG is ambiguous?
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How can we know if a CFG is ambiguous?
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If we find an example of an ambiguity, we know the 
grammar is ambiguous.

There are algorithms for deciding if a CFG belongs to certain 
subsets of CFGs, e.g. LL, LR, etc. (See later lectures.) These 
grammars are unambiguous.

But in the general case, the problem is undecidable: it is not 
possible to construct a general algorithm that decides 
ambiguity for an arbitrary CFG.

Strategies for eliminating ambiguities, next lecture.



43

Parsing



Different parsing algorithms
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Different parsing algorithms
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Ambiguous

Unambiguous

All context-free grammars

LR

LL

LL:
Left-to-right scan
Leftmost derivation
Builds tree top-down
Simple to understand

LR:
Left-to-right scan
Rightmost derivation
Builds tree bottom-up
More powerful



LL and LR parsers:
main idea
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... if   ID  then  ID  =  ID  ;  ID ...

LR(1): decides to build Assign after seeing 
the first token following its subtree.
The tree is built bottom up.

Exp Assign

Exp

The token is called lookahead.
LL(k) and LR(k) use k lookahead tokens.

In practice, k=1 is usually used 

... if   ID  then  ID  =  ID  ;  ID ...

IfStmt

Exp Assign

LL(1): decides to build Assign after 
seeing the first token of its subtree.
The tree is built top down.

Block



Recursive-descent parsing
A way of programming an LL(1) parser by recursive method calls
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A –> B | C | D
B –> e C f D
C –> ...
D –> ...



Recursive-descent parsing
A way of programming an LL(1) parser by recursive method calls
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Assume a BNF grammar with exactly one production rule for each nonterminal.
(Can easily be generalized to EBNF.)

Each production rule RHS is either
1. a sequence of token/nonterminal symbols, or
2. a set of nonterminal symbol alternatives

For each  nonterminal, a method is constructed. The method
1. matches tokens and calls nonterminal methods, or
2. calls one of the nonterminal methods – which one depends on the 

lookahead token.

If the lookahead token does not match, a parsing error is reported.

A –> B | C | D
B –> e C f D
C –> ...
D –> ...



Example Java implementation: overview
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statement –> assignment | block
assignment –> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
...

class Parser {
  private int token; // current lookahead token
  void accept(int t) {...} // accept t and read in next token 
  void error(String str) {...} // generate error message
  void statement() {...}
  void assignment() {...}
  void block() {...}
  ...

}



Example: Parser skeleton details

50

statement –> assignment | block
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
expr –> ...

class Parser {
  final static int ID=1, WHILE=2, DO=3, ASSIGN=4, ...;
  private int token; // current lookahead token
  void accept(int t) { // accept t and read in next token
    if (token==t) {
      token = nextToken();
    } else {
      error("Expected " + t + " , but found " + token);
    }
  } 
  void error(String str) {...} // generate error message
  private int nextToken() {...}      // read next token from scanner
  void statement() ...
  ...

}



Example: recursive descent methods
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statement –> assignment | block
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE

class Parser {
  void statement() {
    switch(token) {
      case ID: assignment(); break;
      case LBRACE: block(); break;
      default: error("Expecting statement, found: " + token);
    }
  }
  void assignment() {
    accept(ID); accept(ASSIGN); expr(); accept(SEMICOLON);
  } 
  void block() {
    accept(LBRACE);
    while (token!=RBRACE) { statement(); }
    accept(RBRACE);
  } 
  ...
}



Is this grammar LL(1)?
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expr –> name params | name

What would happen in a recursive-descent parser?

Could the grammar be LL(2)? LL(k)?



Is this grammar LL(1)?
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expr –> name params | name

This is called common prefix

What would happen in a recursive-descent parser?
Answer: The expr method would not know which alternative to call

Could the grammar be LL(2)? LL(k)?
Answer: This depends on the definition of name



Is this grammar LL(1)?
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What would happen in a recursive-descent parser?

Could the grammar be LL(2)? LL(k)?

expr –> expr "+" term



Is this grammar LL(1)?
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This is called left recursion

What would happen in a recursive-descent parser?
Answer: The expr method would call expr recursively without 
reading any token, resulting in an endless recursion.

Could the grammar be LL(2)? LL(k)?
Answer: No.

expr –> expr "+" term



Dealing with common prefix of limited length:
Local lookahead
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LL(2) grammar:
statement –> assignment | block | callStmt
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
callStmt –> ID LPAR expr RPAR SEMICOLON

void statement() ...
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LL(2) grammar:
statement –> assignment | block | callStmt
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
callStmt –> ID LPAR expr RPAR SEMICOLON

void statement() {
  switch(token) {
    case ID: 
      if (lookahead(2) == ASSIGN) {
        assignment();
      } else {
        callStmt();
      }
      break;
    case LBRACE: block(); break;
    default: error("Expecting statement, found: " + token);
  }
}

Dealing with common prefix of limited length:
Local lookahead



Generating the parser:

Syntactic analyzer
(parser)

Context-free 
grammar Parser generator

58

tokens

tree



Beaver: an LR-based parser generator

Parser in Java

Context-free 
grammar,

with semantic 
actions in Java

Beaver

59

tokens

tree



Example beaver specification
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%class "LangParser";
%package "lang";
...
%terminals LET, IN, END, ASSIGN, MUL, ID, NUMERAL;

%goal program; // The start symbol

// Context-free grammar
program = exp;
exp = factor | exp MUL factor;
factor = let | numeral | id;
let = LET id ASSIGN exp IN exp END;
numeral = NUMERAL;
id = ID;

Later on, we will extend this specification with semantic actions to build the syntax tree.
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RE CFG
Typical
Alphabet

characters terminal symbols 
(tokens)

Language is 
a set of ...

strings
(char sequences)

sentences
(token sequences)

Used for... tokens parse trees
Power iteration recursion
Recognizer DFA DFA with stack

Regular Expressions vs Context-Free Grammars
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Grammar Rule patterns Type
regular X –> aY  or  X –> a  or  X –> e 3

context free X –> g 2
context sensitive a X b –> a g b 1

arbitrary g –> d 0

The Chomsky hierarchy of formal grammars

a – terminal symbol
a, b, g, d – sequences of (terminal or nonterminal) symbols

Type(3) ⊂ Type (2) ⊂ Type(1) ⊂ Type(0)
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Grammar Rule patterns Type
regular X –> aY  or  X –> a  or  X –> e 3

context free X –> g 2
context sensitive a X b –> a g b 1

arbitrary g –> d 0

The Chomsky hierarchy of formal grammars

a – terminal symbol
a, b, g, d – sequences of (terminal or nonterminal) symbols

Type(3) ⊂ Type (2) ⊂ Type(1) ⊂ Type(0)

Regular grammars have the same power as regular expressions
(tail recursion = iteration).

Type 2 and 3 are of practical use in compiler construction.
Type 0 and 1 are only of theoretical interest.



Course overview

Semantic analyzer
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Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular 
expressions

Context-free 
grammar

Attribute 
grammar

tokens

source code (text)

AST (Abstract syntax tree)

What we have covered:
 Context-free grammars, derivations, parse trees
 Ambiguous grammars
 Introduction to parsing, recursive-descent

You can now finish assignment 1



Summary questions
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• Construct a CFG for a simple part of a programming language.
• What is a nonterminal symbol? A terminal symbol? A production? A start 

symbol? A parse tree?
• What is a left-hand side of a production? A right-hand side?
• Given a grammar G, what is meant by the language L(G)?
• What is a derivation step? A derivation? A leftmost derivation? A righmost 

derivation?
• How does a derivation correspond to a parse tree?
• What does it mean for a grammar to be ambiguous? Unambiguous?
• Give an example an ambiguous CFG.
• What is the difference between an LL and an LR parser?
• What is the difference between LL(1) and LL(2)? Or between LR(1) and LR(2)?
• Construct a recursive descent parser for a simple language.
• Give typical examples of grammars that cannot be handled by a recursive-

descent parser.
• Explain why context-free grammars are more powerful than regular 

expressions.
• In what sense are context-free grammars "context-free"?


