
EDAN65: Compilers, Lecture 03

Context-free grammars,
Introduction to parsing

Görel Hedin
Revised: 2023-08-31

Course overview

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

This lecture

Analyzing program text

3

AssignStmt

Exp

Add

Exp Exp

ID EQ ID PLUS ID SEMI
program text

tokens

parse tree

sum = sum + k ; \n

non-tokens (like white space) are discarded

Recall: Generating the compiler:

Semantic analyzer

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Scanner generator
JFlex

Context-free
grammar

Parser generator
Beaver

Attribute
grammar

Attribute evaluator
generator

We will use a parser generator called Beaver

4

tokens

text

tree

5

Context-Free Grammars

Regular Expressions vs Context-Free Grammars

6

An RE can have iteration

A CFG can also have recursion
(it is possible to derive a symbol, e.g., Stmt, from itself)

Example REs:
WHILE = "while"
ID = [a-z][a-z0-9]*
LPAR = "("
RPAR = ")"
PLUS = "+"
...

Example CFG:
Stmt –> WhileStmt
Stmt –> AssignStmt
WhileStmt –> WHILE LPAR Exp RPAR Stmt
Exp –> ID
Exp –> Exp PLUS Exp
...

Elements of a Context-Free Grammar

7

Production rules:
X –> s1 s2 … sn
where sk is a symbol (terminal or nonterminal), n >= 0

Nonterminal symbols

Terminal symbols (tokens)

Start symbol
(one of the nonterminals, usually the left-hand side of the first production)

Example CFG:
Stmt –> WhileStmt
Stmt –> AssignStmt
WhileStmt –> WHILE LPAR Exp RPAR Stmt
AssignStmt –> ID EQ Exp SEMIC
…

Shorthand for alternatives

8

Stmt –> WhileStmt
Stmt –> AssignStmt

Stmt –> WhileStmt | AssignStmt

is equivalent to

Shorthand for repetition

9

Stmt*

StmtList –> e | Stmt StmtList

is equivalent to

StmtList

where

Exercise
Construct a grammar covering this program and similar ones:

10

Example program:
while (k <= n) {sum = sum + k; k = k+1;}

Solution
Construct a grammar covering this program and similar ones:

11

CFG:
Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp

Example program:
while (k <= n) {sum = sum + k; k = k+1;}

(Often, simple tokens are written directly as text strings)

Parsing
Use the grammar to derive a
tree for a program (top-down):

12sum = sum + k ;

Stmt Start symbol

Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp

Parsing
Use the grammar to derive a
tree for a program (bottom-up):

13sum = sum + k ;

Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp

Parsing
Use the grammar to derive
a tree for a program:

14sum = sum + k ;

Stmt Start symbol

Stmt –> WhileStmt | AssignStmt | Block
WhileStmt –> "while" "(" Exp ")" Stmt
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> LessEq | Add | ID | INT
LessEq –> Exp "<=" Exp
Add –> Exp "+" Exp

sum = sum + k ;

AssignStmt

Exp

Add

Exp Exp

Nonterminals are
inner nodes

Terminals are leaves

A parse tree includes all
the input tokens as leaves.

Corresponding abstract syntax tree
(will be discussed in later lecture)

15
sum sum k

AssignStmt

Add

IdExp IdExpIdExp

An abstract syntax tree is similar
to a parse tree, but simpler.

It includes only some of the
tokens.

(Tokens that could be generated
from the tree are excluded.)

EBNF vs Canonical Form

16

EBNF:
Stmt –> AssignStmt | Block
AssignStmt –> ID "=" Exp ";"
Block –> "{" Stmt* "}"
Exp –> Add | ID
Add –> Exp "+" Exp

Canonical form:
Stmt –> ID "=" Exp ";"
Stmt –> "{" Stmts "}"
Stmts –> e
Stmts –> Stmt Stmts
Exp –> Exp "+" Exp
Exp –> ID

(Extended) Backus-Naur Form:
• Compact, easy to read and write
• BNF has alternatives
• EBNF has additionally repetition,

optionals, parentheses (like REs)
• Common notation for practical use

Canonical form:
• Core formalism for CFGs
• Useful for proving properties and

explaining algorithms

Real world example:
The Java Language Specification

17

See https://docs.oracle.com/javase/specs/jls/se11/html
• See Chapter 2 about the Java grammar notation.
• See Chapter 19 for the full syntax

OrdinaryCompilationUnit:
 [PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

PackageDeclaration:
 {PackageModifier} package Identifier {. Identifier} ;

PackageModifier:
 Annotation

…

18

Formal definition of CFGs

Formal definition of CFGs (canonical form)

19

A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
 X –> Y1 Y2 … Yn
 where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N

Formal definition of CFGs (canonical form)

20

A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
 X –> Y1 Y2 … Yn
 where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N

So, the left-hand side X of a rule is a nonterminal.

And the right-hand side Y1 Y2 … Yn is a sequence of nonterminals
and terminals.

If the rhs for a production is empty, i.e., n = 0, we write
 X –> e

A grammar G defines a language L(G)

21

A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
 X –> Y1 Y2 … Yn
 where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N

A grammar G defines a language L(G)

22

A context-free grammar G = (N, T, P, S), where
N – the set of nonterminal symbols
T – the set of terminal symbols
P – the set of production rules, each with the form
 X –> Y1 Y2 … Yn
 where X ∈ N, n ≥ 0, and Yk ∈ N ∪ T
S – the start symbol (one of the nonterminals). I.e., S ∈ N

G defines a language L(G) over the alphabet T

T* is the set of all possible sequences of T symbols.

L(G) is the subset of T* that can be derived from the start symbol
S, by following the production rules P.

Exercise

23

G = (N, T, P, S)

P = {
 Stmt –> ID "=" Exp ";",
 Stmt –> "{" Stmts "}" ,
 Stmts –> e ,
 Stmts –> Stmt Stmts ,
 Exp –> Exp "+" Exp ,
 Exp –> ID
}

N =

T =

S =

L(G) =

Solution

24

G = (N, T, P, S)

P = {
 Stmt –> ID "=" Exp ";",
 Stmt –> "{" Stmts "}" ,
 Stmts –> e ,
 Stmts –> Stmt Stmts ,
 Exp –> Exp "+" Exp ,
 Exp –> ID
}

N = {Stmt, Exp, Stmts}

T = {ID, "=", "{", "}", ";", "+"}

S = Stmt

L(G) = {
 "{" "}",
 "{" "{" "}" "}",
 ID "=" ID ";",
 "{" ID "=" ID ";" "}",
 ID "=" ID "+" ID ";",
 "{" "{" "}" "{" "}" "}",
 "{" "{" "{" "}" "}" "}",
 "{" ID "=" ID "+" ID ";" "}",
 ID "=" ID "+" ID "+" ID ";",
 ...

}

The sequences in L(G) are usually called sentences or strings

25

Derivations

Derivation step

26

If we have a sequence of terminals and nonterminals, e.g.,

 X a Y Y b

we can replace one of the nonterminals, applying a production
rule. This is called a derivation step.
(Swedish: Härledningssteg)

Derivation step

27

If we have a sequence of terminals and nonterminals, e.g.,

 X a Y Y b

we can replace one of the nonterminals, applying a production
rule. This is called a derivation step.
(Swedish: Härledningssteg)

Suppose there is a production

 Y –> X a

and we apply it for the first Y in the sequence. We write the
derivation step as follows:

 X a Y Y b => X a X a Y b

Derivation

28

A derivation, is simply a sequence of derivation steps, e.g.:

 g0 => g1 => … => gn (n ≥ 0)

where each gi is a sequence of terminals and nonterminals

If there is a derivation from g0 to gn, we can write this as

 g0 =>* gn

So this means it is possible to get from the sequence g0 to the
sequence gn by applying 0 or more production rules.

Definition of the language L(G)

29

Recall that:

 G = (N, T, P, S)

 T* is the set of all possible sequences of T symbols.

 L(G) is the subset of T* that can be derived from the
 start symbol S, by applying production rules in P.

Definition of the language L(G)

30

Recall that:

 G = (N, T, P, S)

 T* is the set of all possible sequences of T symbols.

 L(G) is the subset of T* that can be derived from the
 start symbol S, by applying production rules in P.

Using the concept of derivations, we can formally define L(G) as follows:

 L(G) = { w ∈ T* | S =>* w }

Exercise:
Prove that a sentence belongs to a language

31

Prove that

 INT + INT * INT

belongs to the language of the following
grammar:

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT

Proof:

Solution:
Prove that a sentence belongs to a language

32

Proof:
(by showing all the derivation steps from the start symbol Exp)

Exp
=>p1 Exp "+" Exp
=>p3 INT "+" Exp
=>p2 INT "+" Exp "*" Exp
=>p3 INT "+" INT "*" Exp
=>p3 INT "+" INT "*" INT

Prove that

 INT + INT * INT

belongs to the language of the following
grammar:

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT

Leftmost and rightmost derivations

33

In a leftmost derivation, the
leftmost nonterminal is replaced
in each derivation step, e.g.,:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT

Leftmost and rightmost derivations

34

In a leftmost derivation, the
leftmost nonterminal is replaced
in each derivation step, e.g.,:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

LL parsing algorithms use leftmost derivation.
LR parsing algorithms use rightmost derivation.
Will be discussed in later lectures.

In a rightmost derivation, the
rightmost nonterminal is replaced in
each derivation step, e.g.,:

Exp =>
Exp "+" Exp =>
Exp "+" Exp "*" Exp =>
Exp "+" Exp "*" INT =>
Exp "+" INT "*" INT =>
INT "+" INT "*" INT

p1: Exp –> Exp "+" Exp
p2: Exp –> Exp "*" Exp
p3: Exp –> INT

A derivation corresponds to building a parse tree

35

Grammar:
 Exp –> Exp "+" Exp
 Exp –> Exp "*" Exp
 Exp –> INT

Example derivation:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exercise: draw the parse tree
(also called derivation tree).

A derivation corresponds to building a parse tree

36

Grammar:
 Exp –> Exp "+" Exp
 Exp –> Exp "*" Exp
 Exp –> INT

Example derivation:

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Parse tree (derivation tree):

Exp

Exp Exp

Exp Exp

"+"

INT
"*"

INT INT

37

Ambiguities

Exercise:
Can we do another derivation of the same sentence,

that gives a different parse tree?

38

Exp –> Exp "+" Exp
 Exp –> Exp "*" Exp
 Exp –> INT

One derivation and parse tree

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exp

Exp Exp

Exp Exp

"+"

INT
"*"

INT INT

Other derivation that gives different
parse tree

Solution:
Can we do another derivation of the same sentence,

that gives a different parse tree?

39

Exp –> Exp "+" Exp
 Exp –> Exp "*" Exp
 Exp –> INT

One derivation and parse tree

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exp

Exp Exp

Exp Exp

"+"

INT
"*"

INT INT

Other derivation that gives different
parse tree
Exp =>
Exp "*" Exp =>
Exp "+" Exp "*" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

Exp

Exp "*"

INT

Exp

Exp Exp "+"

INT INT

Which parse tree would we prefer?

Ambiguous context-free grammars

40

A CFG is ambiguous if a sentence in the language can be
derived by two (or more) different parse trees.

A CFG is unambiguous if each sentence in the language can
be derived by only one parse tree.

(Swedish: tvetydig, otvetydig)

Note! There can be many different derivations that give the
same parse tree.

How can we know if a CFG is ambiguous?

41

How can we know if a CFG is ambiguous?

42

If we find an example of an ambiguity, we know the
grammar is ambiguous.

There are algorithms for deciding if a CFG belongs to certain
subsets of CFGs, e.g. LL, LR, etc. (See later lectures.) These
grammars are unambiguous.

But in the general case, the problem is undecidable: it is not
possible to construct a general algorithm that decides
ambiguity for an arbitrary CFG.

Strategies for eliminating ambiguities, next lecture.

43

Parsing

Different parsing algorithms

44

Different parsing algorithms

45

Ambiguous

Unambiguous

All context-free grammars

LR

LL

LL:
Left-to-right scan
Leftmost derivation
Builds tree top-down
Simple to understand

LR:
Left-to-right scan
Rightmost derivation
Builds tree bottom-up
More powerful

LL and LR parsers:
main idea

46

... if ID then ID = ID ; ID ...

LR(1): decides to build Assign after seeing
the first token following its subtree.
The tree is built bottom up.

Exp Assign

Exp

The token is called lookahead.
LL(k) and LR(k) use k lookahead tokens.

In practice, k=1 is usually used

... if ID then ID = ID ; ID ...

IfStmt

Exp Assign

LL(1): decides to build Assign after
seeing the first token of its subtree.
The tree is built top down.

Block

Recursive-descent parsing
A way of programming an LL(1) parser by recursive method calls

47

A –> B | C | D
B –> e C f D
C –> ...
D –> ...

Recursive-descent parsing
A way of programming an LL(1) parser by recursive method calls

48

Assume a BNF grammar with exactly one production rule for each nonterminal.
(Can easily be generalized to EBNF.)

Each production rule RHS is either
1. a sequence of token/nonterminal symbols, or
2. a set of nonterminal symbol alternatives

For each nonterminal, a method is constructed. The method
1. matches tokens and calls nonterminal methods, or
2. calls one of the nonterminal methods – which one depends on the

lookahead token.

If the lookahead token does not match, a parsing error is reported.

A –> B | C | D
B –> e C f D
C –> ...
D –> ...

Example Java implementation: overview

49

statement –> assignment | block
assignment –> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
...

class Parser {
 private int token; // current lookahead token
 void accept(int t) {...} // accept t and read in next token
 void error(String str) {...} // generate error message
 void statement() {...}
 void assignment() {...}
 void block() {...}
 ...

}

Example: Parser skeleton details

50

statement –> assignment | block
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
expr –> ...

class Parser {
 final static int ID=1, WHILE=2, DO=3, ASSIGN=4, ...;
 private int token; // current lookahead token
 void accept(int t) { // accept t and read in next token
 if (token==t) {
 token = nextToken();
 } else {
 error("Expected " + t + " , but found " + token);
 }
 }
 void error(String str) {...} // generate error message
 private int nextToken() {...} // read next token from scanner
 void statement() ...
 ...

}

Example: recursive descent methods

51

statement –> assignment | block
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE

class Parser {
 void statement() {
 switch(token) {
 case ID: assignment(); break;
 case LBRACE: block(); break;
 default: error("Expecting statement, found: " + token);
 }
 }
 void assignment() {
 accept(ID); accept(ASSIGN); expr(); accept(SEMICOLON);
 }
 void block() {
 accept(LBRACE);
 while (token!=RBRACE) { statement(); }
 accept(RBRACE);
 }
 ...
}

Is this grammar LL(1)?

52

expr –> name params | name

What would happen in a recursive-descent parser?

Could the grammar be LL(2)? LL(k)?

Is this grammar LL(1)?

53

expr –> name params | name

This is called common prefix

What would happen in a recursive-descent parser?
Answer: The expr method would not know which alternative to call

Could the grammar be LL(2)? LL(k)?
Answer: This depends on the definition of name

Is this grammar LL(1)?

54

What would happen in a recursive-descent parser?

Could the grammar be LL(2)? LL(k)?

expr –> expr "+" term

Is this grammar LL(1)?

55

This is called left recursion

What would happen in a recursive-descent parser?
Answer: The expr method would call expr recursively without
reading any token, resulting in an endless recursion.

Could the grammar be LL(2)? LL(k)?
Answer: No.

expr –> expr "+" term

Dealing with common prefix of limited length:
Local lookahead

56

LL(2) grammar:
statement –> assignment | block | callStmt
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
callStmt –> ID LPAR expr RPAR SEMICOLON

void statement() ...

57

LL(2) grammar:
statement –> assignment | block | callStmt
assignment–> ID ASSIGN expr SEMICOLON
block –> LBRACE statement* RBRACE
callStmt –> ID LPAR expr RPAR SEMICOLON

void statement() {
 switch(token) {
 case ID:
 if (lookahead(2) == ASSIGN) {
 assignment();
 } else {
 callStmt();
 }
 break;
 case LBRACE: block(); break;
 default: error("Expecting statement, found: " + token);
 }
}

Dealing with common prefix of limited length:
Local lookahead

Generating the parser:

Syntactic analyzer
(parser)

Context-free
grammar Parser generator

58

tokens

tree

Beaver: an LR-based parser generator

Parser in Java

Context-free
grammar,

with semantic
actions in Java

Beaver

59

tokens

tree

Example beaver specification

60

%class "LangParser";
%package "lang";
...
%terminals LET, IN, END, ASSIGN, MUL, ID, NUMERAL;

%goal program; // The start symbol

// Context-free grammar
program = exp;
exp = factor | exp MUL factor;
factor = let | numeral | id;
let = LET id ASSIGN exp IN exp END;
numeral = NUMERAL;
id = ID;

Later on, we will extend this specification with semantic actions to build the syntax tree.

61

RE CFG
Typical
Alphabet

characters terminal symbols
(tokens)

Language is
a set of ...

strings
(char sequences)

sentences
(token sequences)

Used for... tokens parse trees
Power iteration recursion
Recognizer DFA DFA with stack

Regular Expressions vs Context-Free Grammars

62

Grammar Rule patterns Type
regular X –> aY or X –> a or X –> e 3

context free X –> g 2
context sensitive a X b –> a g b 1

arbitrary g –> d 0

The Chomsky hierarchy of formal grammars

a – terminal symbol
a, b, g, d – sequences of (terminal or nonterminal) symbols

Type(3) ⊂ Type (2) ⊂ Type(1) ⊂ Type(0)

63

Grammar Rule patterns Type
regular X –> aY or X –> a or X –> e 3

context free X –> g 2
context sensitive a X b –> a g b 1

arbitrary g –> d 0

The Chomsky hierarchy of formal grammars

a – terminal symbol
a, b, g, d – sequences of (terminal or nonterminal) symbols

Type(3) ⊂ Type (2) ⊂ Type(1) ⊂ Type(0)

Regular grammars have the same power as regular expressions
(tail recursion = iteration).

Type 2 and 3 are of practical use in compiler construction.
Type 0 and 1 are only of theoretical interest.

Course overview

Semantic analyzer

64

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

tokens

source code (text)

AST (Abstract syntax tree)

What we have covered:
 Context-free grammars, derivations, parse trees
 Ambiguous grammars
 Introduction to parsing, recursive-descent

You can now finish assignment 1

Summary questions

65

• Construct a CFG for a simple part of a programming language.
• What is a nonterminal symbol? A terminal symbol? A production? A start

symbol? A parse tree?
• What is a left-hand side of a production? A right-hand side?
• Given a grammar G, what is meant by the language L(G)?
• What is a derivation step? A derivation? A leftmost derivation? A righmost

derivation?
• How does a derivation correspond to a parse tree?
• What does it mean for a grammar to be ambiguous? Unambiguous?
• Give an example an ambiguous CFG.
• What is the difference between an LL and an LR parser?
• What is the difference between LL(1) and LL(2)? Or between LR(1) and LR(2)?
• Construct a recursive descent parser for a simple language.
• Give typical examples of grammars that cannot be handled by a recursive-

descent parser.
• Explain why context-free grammars are more powerful than regular

expressions.
• In what sense are context-free grammars "context-free"?

