
EDAN65: Compilers

Introduction and Overview

Görel Hedin
Revised: 2023-08-28

Instructors

EDAN65, Lecture 01 2

• Prof. Görel Hedin

Lectures

• Idriss Riouak
• Anton Risberg Alaküla
• Alexandru Dura
• Alfred Åkesson

Programming assignments and lab sessions

Course registration

EDAN65, Lecture 01 3

Confirm that you will take the course by signing list

Register in LADOK this week

Sign up for lab session, by Thursday, Aug 31

• Object-oriented programming, Java
• Assignment 0 includes some details on Java to fresh up

• Simple algorithms and data structures
(recursion, trees, lists, hash tables, …)

Prerequisites

Course information

EDAN65, Lecture 01 4

• read the Week by Week page to find out what to do each week.
• Lecture slides, readings, assignments, exercises, quizzes
• Material added continuously during the course
• No handouts – print yourself if you want it on paper

Web site: https://cs.lth.se/edan65

• A. W. Appel, Jens Palsberg: Modern Compiler Implementation in Java, 2nd
Edition, Cambridge University Press, 2002, ISBN: 0-521-82060-X

• Available as on-line e-book through Lund University
• Only part of the book is used. Covers only part of the course.

Textbook

Moodle: Forum, online quizzes, info on extra help sessions.

http://cs.lth.se/edan65

Course structure
• Lectures, Mon 15-17, Tue 13-15 (+ Thu 13-15 week 1)
• Assignment 0, for freshing up on Unix, Java, and JUnit, and understanding the build system

Gradle. Working with Git. Do on your own.
• Assignment 1-6. Mandatory.

– Work in pairs. Form pairs in the break. Or use the forum.
– Heavy. Lab sessions for getting approved and getting help if you are stuck.
– Wed 8-10, Wed 10-12 Thu 8-10, Thu 10-12. Sign up by Thursday Aug 31
– Lab sessions start next week (but start this week on your work)
– Assignments prerequisite for doing exam
– Make sure the TAs note your presence at the lab session. If you get stuck, you can get

your assignment approved the next week (if you were present at the ordinary session).
Email Görel for exemption due to illness.

• Lecture quizzes
– Do on your own. (In Moodle.)

• Exercises
– Do on your own or with your partner. (Book exercises without solutions + separate

exercises with solutions)
• Exam – sign up in advance through the LTH system

– Exam: Friday, Oct 27, 2023, 14-19. Kårhuset, Gasquesalen
– Retake: April 2024.

5EDAN65, Lecture 01

Working with the assignments
• Collaborating with your partner, git repos on coursegit.cs.lth.se (see moodle)

– in the same repository (recommended)
• sit together, alternate who commits, commit often
• git history should show progression during solving the assignment
• if you commit from the same account, switch which account you use for the next assignment

– in separate repositories
• looser collaboration, help each other out if needed, compare solutions to get new insights, sync before lab session
• commit often, git history should show progression during solving the assignment

– Important: you need hands-on experience from all parts - you should be able to run and
explain all parts of the solution

• If you (and your partner) get stuck before your lab session
– ask on the forum

• you are encouraged to give answers to other students on the forum
(for general advice, small examples, but not full solutions)

– we might add extra online help sessions

• "Self-grading" web service:
Drop in your compiler jar file and run our tests.
Available for labs 2-6.

6EDAN65, Lecture 01

Estimated typical effort for assignments

EDAN65, Lecture 01 7

A0: Unix, Java, Gradle, Git 1-4 hours do on your own

A1: Scanning 5 hours mandatory

A2: Parsing 15 hours mandatory

A3: Visitors, aspects 12 hours mandatory

A4: Semantic analysis 18 hours mandatory

A5: Interpreter 15 hours mandatory

A6: Code generator 12 hours mandatory

Student representatives

• Who? 2 students.
• During the course: listen to your peers. Give

feedback to instructor if relevant.
• After the course: participate in discussion of

course evaluation results (with instructor).

8EDAN65, Lecture 01

Why learn compiler construction?

EDAN65, Lecture 01 9

Why learn compiler construction?

EDAN65, Lecture 01 10

• Understand how the language tools you use work (editors, compilers,
transpilers, interpreters, ...)

• A compiler is just one example of a language tool. But it includes all the
major techniques used for any software language processing.

It is about language tooling

• Many software projects use some kind of domain-specific language, e.g., for
configuration or describing input.

Languages are everywhere in software

• Compiler theory: fundamental to computer science
• Essential for understanding programming languages

Fundamental theory and concepts

A traditional compiler

11

compilersource
code

assembly
code

EDAN65, Lecture 01

A traditional compiler

12

compilersource
code

assembly
code

EXAMPLE:

compiler
...
csum = a + b + 1;
...

.data
a: .long 0
b: .long 0
csum: .long 0

 .code
 ...
 movl a, %eax
 addl b, %eax
 addl $1, %eax
 movl %eax, csum
 ...EDAN65, Lecture 01

What happens after compilation?

13

compilersource
code

assembly
code

EDAN65, Lecture 01

What happens after compilation?

14

compilersource
code

assembly
code

assembler object
code linker executable

code

library
object code

• object code contains global symbols
and relocatable addresses

• in executable code global symbols and
relocatable addresses have been
replaced by absolute addresses

EDAN65, Lecture 01

loader

machine

memory

stack

heap

code

static
data

objects

activation
records

...
0000 0001
0176 0024
0024 7050
2530 0000
0000 0010
2444 5512
0000 0010
...

What about Java?

15EDAN65, Lecture 01

What about Java?

16

javac
compilerA.java A.class

class file
(java bytecode)

EDAN65, Lecture 01

What about Java?

17

EXAMPLE:

javac
compiler

...
csum = a + b + 1;
...

...
iload_1
iload_2
iadd
iconst_1
iadd
istore_3
...

javac
compilerA.java A.class

class file
(java bytecode)

EDAN65, Lecture 01

Running Java code?

18

javac
compilerA.java A.class

EDAN65, Lecture 01

Running Java code?

19

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

EDAN65, Lecture 01

Running Java code?

20

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

class loader

EDAN65, Lecture 01

Running Java code?

21

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

class loader

bytecode

load
and verify

EDAN65, Lecture 01

Running Java code?

22

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

class loader

bytecode

load
and verify

EDAN65, Lecture 01

A-object

Running Java code?

23

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

class loader

machine
code

JIT
bytecode

load
and verify

EDAN65, Lecture 01

A-object

Running Java code?

24

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

class loader

machine
code

JIT

optimized
machine

code
optimize

bytecode

load
and verify

EDAN65, Lecture 01

A-object

Running Java code?

25

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

class loader

machine
code

JIT

optimized
machine

code
optimize

The java program contains a java virtual machine (jvm).
It can:
• load bytecode to the heap
• interpret bytecode
• compile bytecode into machine code during execution

(JIT – Just-In-Time Compilation)
• optimize the machine code
• garbage collect the heap

bytecode

load
and verify

EDAN65, Lecture 01

A-object

Inside the compiler:

26EDAN65, Lecture 01 target code (instructions for machine)

source code (text)

Inside the compiler:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

27EDAN65, Lecture 01

Each phase converts the program
from one representation to another

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Inside the compiler:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

28EDAN65, Lecture 01

Each phase converts the program
from one representation to another

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Analysis

Synthesis

Front and back end:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

29EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Front and back end:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

30EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Front end
(independent on target language)

Back end
(independent on source language)

Front and back end:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

31EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Front end
(independent on target language)

Back end
(independent on source language)

Middle end
(independent on both)

Multiple languages and target machines

EDAN65, Lecture 01 32

Language 1 Language 2 Language 3 Language 4

Target 1 Target 2 Target 3 Target 4 Target 5

Multiple languages and target machines

EDAN65, Lecture 01 33

Language 1 Language 2 Language 3 Language 4

Target 1 Target 2 Target 3 Target 4 Target 5

Multiple languages and target machines

EDAN65, Lecture 01 34

Language 1 Language 2 Language 3 Language 4

Target 1 Target 2 Target 3 Target 4 Target 5

m languages
n target machines
m*n compilers

Is there a smarter way?

Multiple languages and target machines

EDAN65, Lecture 01 35

Language 1
frontend

Language 2
frontend

Language 3
frontend

Language 4
frontend

Target 1
backend

Target 2
backend

Target 3
backend

Target 4
backend

Target 5
backend

Multiple languages and target machines

EDAN65, Lecture 01 36

Language 1
frontend

Language 2
frontend

Language 3
frontend

Language 4
frontend

Target 1
backend

Target 2
backend

Target 3
backend

Target 4
backend

Target 5
backend

intermediate
representation (IR)

m language frontends
n target backends
m + n components

Clang
(frontend for C/C++/ObjC)

LLVM example

37EDAN65, Lecture 01

LLVM IR

Fortran
frontend

Haskell
frontend

X86 backend PowerPC
backend

ARM
backend

LLVM Optimizer

LLVM IR

...

Interpreter ...

Clang
(frontend for C/C++/ObjC)

LLVM example

38EDAN65, Lecture 01

Why?
• Implement m front ends + n back ends instead of m * n compilers.
• Many optimizations are best performed on intermediate code.
• Easier to debug the front end using an interpreter than a target machine

LLVM IR

Fortran
frontend

Haskell
frontend

X86 backend PowerPC
backend

ARM
backend

LLVM Optimizer

LLVM IR

...

Interpreter ...

javac

Java example:

39EDAN65, Lecture 01

Java bytecode

Eclipse
Java compiler Jython

HotSpot JVM Jikes
Research VM dx Graal

VM

Scala
compiler ...

Dalvik VM
(Android)

Dalvik bytecode / Android Runtime

Android
Runtime (ART)

...

Some terminology
• A compiler translates code in a high-level language to a lower-level language.

Examples: Compiling Java source code to Java bytecode. Compiling C source code to assembly code.

• An interpreter is software that executes a high/low level program, often by calling one procedure for each
program construct. (This is in contrast to executing the program directly on hardware.)
Example: A Python interpreter reads Python code and runs it.

• A transpiler (or source-to-source translator) translates code from one high-level language to another.
Example: Transpiling Typescript source code to Javascript.

• A virtual machine (VM) is an interpreter that executes low-level, usually platform-independent code.
(This is in the context of language implementation. In other contexts, the term "virtual machine" can mean
operating system virtualization.)
Example: The JVM (Java Virtual Machine) executes Java bytecode.

• Platform-independent low-level code, designed to be executed by a VM, was originally called p-code
(portable code), but is now usually called bytecode.

• An interpreter or VM may use a JIT (“Just In Time”) compiler to compile all or parts of the program into
machine code during execution. In contrast, a traditional compiler compiles to machine code AOT ("Ahead
Of Time"), i.e., before execution starts.

EDAN65, Lecture 01 40

Some historical roots
• The first compiler was developed by Grace Hopper in 1952.

• John McCarthy used JIT compilation in his LISP interpreter in 1960. This was called "Compile and
Go". The term JIT came later, and was popularized with Java.

• The Pascal-P system, developed by Niklaus Wirth's group at ETH in 1972, used portable code
called "p-code". A successor, UCSD-Pascal, used a variant of p-code that was byte-oriented. The
UCSD interpreter was easy to port to different machines and the language spread quickly, and
became a popular language taught at many universities. Java, introduced in 1994, used easily
portable bytecode, and spread quickly for the same reasons.

• Smalltalk-80 used bytecode in the 1980s, and pioneered several runtime compilation and
optimization techniques for object-oriented languages.

• The research language Self refined Smalltalk's dynamic optimization techniques during the early
1990s. This work laid the foundation for the dynamically optimizing VMs we use today, like the
Java Hotspot VM, the Javascript V8 VM, and many others.

EDAN65, Lecture 01 41

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

42EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Compiler phases and program representations:

Compiler phases and program representations:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

43EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Lexical analysis (scanning)

EDAN65, Lecture 01 44

Source text:

while (k<=n) {
sum=sum+k;
k=k+1;

}

Lexical analysis (scanning)

EDAN65, Lecture 01 45

Source text:

while (k<=n) {
sum=sum+k;
k=k+1;

}

while (k<=n) {\n sum=sum+k;\n k=k+1;\n}
What the file looks like:

Lexical analysis (scanning)

EDAN65, Lecture 01 46

Source text:

A token is a symbolic name, sometimes with an attribute.
A lexeme is a string corresponding to a token.
Whitespace (blanks, newlines, etc., are skipped)

while (k<=n) {
sum=sum+k;
k=k+1;

}

WHILE LPAR ID("k") LEQ ID("n") RPAR LBRA ID("sum") EQ ...

while (k<=n) {\n sum=sum+k;\n k=k+1;\n}
What the file looks like:

Tokens the scanner produces:

Compiler phases and program representations:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

47EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Syntactic analysis (parsing)

EDAN65, Lecture 01 48
while (k <= n) { sum = sum + k ; k = k + 1 ; }
WHILE LPAR ID LEQ ID RPAR LBRA ID EQ ID PLUS ID SEMI ID EQ ID PLUS INT SEMI RBRA

WhileStmt parse tree – spans all tokens

Syntactic analysis (parsing)

EDAN65, Lecture 01 49
while (k <= n) { sum = sum + k ; k = k + 1 ; }
WHILE LPAR ID LEQ ID RPAR LBRA ID EQ ID PLUS ID SEMI ID EQ ID PLUS INT SEMI RBRA

WhileStmt

Block

AssignStmt AssignStmt

LessEqual Add Add

Exp

Stmt

Stmt Stmt

Exp Exp

Exp Exp Exp Exp Exp Exp Exp Exp

parse tree – spans all tokens

Abstract syntax tree (AST)

EDAN65, Lecture 01 50
while (k <= n) { sum = sum + k ; k = k + 1 ; }
WHILE LPAR ID LEQ ID RPAR LBRA ID EQ ID PLUS ID SEMI ID EQ ID PLUS INT SEMI RBRA

WhileStmt

Block

AssignStmt AssignStmt

LessEqual Add Add

AST – a tree with only the
essential structure and tokens

Abstract syntax trees

• Used inside the compiler for representing the program
• Very similar to the parse tree, but

– contains only essential tokens
– has a simpler more natural structure

• Often represented by a typed object-oriented model
– abstract classes (Stmt, Expr, Decl, ...)
– concrete classes (WhileStmt, IfStmt, Add, Sub, ...)

 (or corresponding algebraic datatypes with constructors)

EDAN65, Lecture 01 51

Designing an AST model

EDAN65, Lecture 01 52

What abstract
constructs are there

in the language

• OOP: Make them
abstract classes

• FP: Make them
algebraic data
types

What concrete
constructs are there?

• OOP: Make them
subclasses of the
abstract classes

• FP: Make them
constructors of the
algebraic data
types

What parts do the
concrete constructs

have?

• OOP: Add getters
for them, to access
parts

• FP: Use pattern
matching to access
parts

Example AST class hierarchy

EDAN65, Lecture 01 53

Example AST class hierarchy

EDAN65, Lecture 01 54

Stmt

Block

getStmts()

AssignStmt

getId()
getExpr()

Expr

Add

getExpr1()
getExpr2()

LessEqual

getExpr1()
getExpr2()

Id

getID()

Int

getINT()

WhileStmt

getExpr()
getStmt()

Compiler phases and program representations:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

55EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Semantic analysis

Analyze the AST, for example,
• Which declaration corresponds to a variable?
• What is the type of an expression?
• Are there compile time errors in the program?

Analysis aided by adding attributes to the AST
(properties of AST nodes)

EDAN65, Lecture 01 56

Example attributes

EDAN65, Lecture 01 57

Stmt

WhileStmt

getExpr()
getStmt()

Block

getStmts()

AssignStmt

getId()
getExpr()

Expr

Add

getExpr1()
getExpr2()

LessEqual

getExpr1()
getExpr2()

Id

getID()

Int

getINT()

Decl

VarDecl

...

MethodDecl

...

Example attributes

EDAN65, Lecture 01 58

Stmt

WhileStmt

getExpr()
getStmt()

Block

getStmts()

AssignStmt

getId()
getExpr()

Expr

Add

getExpr1()
getExpr2()

LessEqual

getExpr1()
getExpr2()

Id

getID()
decl()

Int

getINT()

Decl

type()

Each Expr has a type() attribute, indicating if the expression is integer, boolean, etc.
Each Id has a decl() attribute, referring to the appropriate declaration node.

VarDecl

...

MethodDecl

...

Compiler phases and program representations:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

59EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

Intermediate code generation

Intermediate code:
• also known as intermediate representation (IR)
• independent of source language
• independent of target machine
• usually assembly-like
– but simpler, without many instruction variants
– and with an unlimited number of registers

(or uses a stack instead of registers)

EDAN65, Lecture 01 60

Compiler phases and program representations:

Semantic analysis

Intermediate
code generation

Optimization

Target code
generation

61EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate codeSee the course Optimizing
Compilers, EDAN75

Generating the compiler:

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

62EDAN65, Lecture 01

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Generating the compiler:

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

63EDAN65, Lecture 01

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions Scanner generator

Context-free
grammar

Parser
generator

Attribute
grammar

Attribute evaluator
generator

Reusable
algoritms,

see EDAN75

Program errors

Semantic analysis

Code generation

64EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

interpreter/
machine

Program errors

Semantic analysis

Code generation

65EDAN65, Lecture 01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

interpreter/
machine

lexical errors
text that cannot be interpreted as a token

syntactic errors
tokens in the wrong order

static-semantic errors
wrong use of names, types, ...

runtime errors
null pointer exception,
division by zero,
stack overflow, ...

logic errors
Compute the wrong result.
Not caught by the compiler or the machine.
Normally try to catch using test cases.
Assertions and program verification can also help.

compile-time
errors

Example errors

EDAN65, Lecture 01 66

int # square(int x) {
 return x * x;
}

int double square(int x) {
 return x * x;
}

boolean square(int x) {
 return x * x;
}

int p(int x) {
 return x / 0;
}

int square(int x) {
 return 2 * x;
}

1. 4.

2. 5.

3.

What kind is each error? Lexical, Syntactic, Static-semantic, Run-time, Logic?

Example errors

EDAN65, Lecture 01 67

int # square(int x) {
 return x * x;
}

int double square(int x) {
 return x * x;
}

boolean square(int x) {
 return x * x;
}

int p(int x) {
 return x / 0;
}

int square(int x) {
 return 2 * x;
}

Lexical error:

Syntactic error:

Static-semantic error:

Runtime error:

Logic error:

1. 4.

2. 5.

3.

Safe versus unsafe languages
• Safe language

All runtime errors are caught by the generated code and/or runtime system, and
are reported in terms of the language.

Examples: Java, C#, Smalltalk, Python, ...

• Unsafe language

Runtime errors in the generated code can lead to undefined behavior, for example
an out of bounds array access. In the best case, this gives a hardware exception
soon after the real error, stopping the program ("segmentation fault"). In the worst
case, the execution continues, computing the wrong result or giving a
segmentation fault much later, leading to bugs that can be extremely hard to find.

Examples: C, Assembly

EDAN65, Lecture 01 68

Course overview

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

69EDAN65, Lecture 01

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

A1

A1, A2

A3, A4

A5

A6

After this course...
• You will have built a complete compiler

• You will have seen new declarative ways of programming

• You will have learnt some fundamental computer science theory

• You will have experience from using several practical tools

EDAN65, Lecture 01 70

Some related courses

• EDAN70, Project in Computer Science, lp2
– Build a small tool, evaluate it, write a short paper

• EDAP15, Program Analysis, lp3
– Deeper program analysis for e.g., security, quality, program

understanding, software improvement, ...
• EDAN75, Optimizing compilers, lp3
– (Given every other year, 2024/2025 next time)

• Master's thesis project in compilers
(related to research or industry)

EDAN65, Lecture 01 71

Applications of compiler construction

• Traditional compilers from source to assembly

• Source-to-source translators, transpilers, preprocessors

• Interpreters and virtual machines

• Integrated programming environments

• Program analysis tools

• Refactoring and other program transformation tools

• Domain-specific languages

EDAN65, Lecture 01 72

Examples of
Domain-Specific Languages

EDAN65, Lecture 01 73

HTML

EDAN65, Lecture 01 74

...
<h3>Lecture 1: Introduction. Mon 13-15. <a
href="http://fileadmin.cs.lth.se/cs/Education/EDAN65/2016/document
s/EDAN65-map.pdf">M:A</h3>

 <a
href="http://fileadmin.cs.lth.se/cs/Education/EDAN65/2016/lectures
/L01.pdf">Slides
 Appel Book: Ch 1-1.2
 Moodle
Quiz

...

.gitconfig

EDAN65, Lecture 01 75

[user]
 name = Görel Hedin
 email = gorel.hedin@cs.lth.se
[push]
 default = simple

Modelica
https://www.modelica.org/

EDAN65, Lecture 01 76

https://www.modelica.org/

Grafchart
https://www.control.lth.se/research/tools-and-software/grafchart.html

EDAN65, Lecture 01 77

https://www.control.lth.se/research/tools-and-software/grafchart.html

Automation Builder
https://abb.com/automationbuilder

EDAN65, Lecture 01 78

https://abb.com/automationbuilder

Some related research at LTH
Language tools
• Extensible compiler tools (Görel Hedin)

• Program analysis, software tools (Christoph Reichenbach)

• Adaptive developer tools (Emma Söderberg)

Backend
• Real-time garbage collection (Roger Henriksson)

• Code optimization for multiprocessors (Jonas Skeppstedt)

NLP
• Natural language processing (Pierre Nugues)

Domain-specific languages
• Languages for stream computing (Jörn Janneck)

• Languages for robotics (Volker Krüger, Christoph Reichenbach)

• Languages for pervasive systems (Boris Magnusson, Görel Hedin)

• Languages for requirements modeling (Björn Regnell)

• Languages for simulation and control (The control department)

EDAN65, Lecture 01 79

Summary questions

80

• What are the major compiler phases?
• What is the difference between the analysis and synthesis phases?
• Why do we use intermediate code?
• What is the advantage of separating the front and back ends?
• What is

• a lexeme?
• a token?
• a parse tree?
• an abstract syntax tree?
• intermediate code?

• What is the difference between assembly code, object code, and
executable code?
• What is bytecode, an interpreter, a virtual machine?
• What is a JIT compiler?
• What kind of errors can be caught by a compiler? A runtime system?

EDAN65, Lecture 01

See course website https://cs.lth.se/edan65 for what to do this week.

https://cs.lth.se/edan65

