
Romeo & Juliet:
Next-gen Robot Programming

Jesper Öqvist

http://www.youtube.com/watch?v=RvO1YpHMu1I

Julia
Dynamic language for scientific computing:
★ Managed memory (GC)
★ Minimal syntax
★ Powerful libraries
★ JIT-compiled (LLVM)
★ Optional type declarations
★ First-class functions
★ Multimethods

Julia Syntax
f(x) = 2x

function mul2(x::Int)::Int
 x + x
end

for i in [1,2,3]
 pintln(mul2(i))
end

Data Types
struct Foo{T}
 x::T
 y::String
 z::Vector{T}
end

No member functions - instead polymorphic multimethods

Multimethods
struct Bird end
struct Fly end

can(::Fly, ::Bird) = "fly cannot bird"
can(::Bird, ::Fly) = "bird can fly"
can(::Any, ::Any) = "unknown"

can(Fly(), Bird())
can(Bird(), Fly())

Multimethods / Multiple Dispatch - runtime selection of most specific method

(on all aruments).

Polymorphism
struct Foo{T}
 x::T
end

unwrap(foo::Foo{T}) where T = foo.x

setindex!(arr::Array{T,D}, x::T, i::Int) where {T, D} = ...

Juliet = Julia for Robots

Statically typed Julia

Compiled to bytecode

Custom GC

Robot VM (Romeo/RVM)

IDE for robot programming

Highlevel System View

Language Interpreter

Motion / IO

Software
Hardware

Teach Pendant

Juliet code

Juliet

User

Libraries

Robot Considerations
Slow predictable execution > fast unpredictable JIT
Static typing > runtime errors
Static allocations > dynamic arrays/lists

Robot tasks:
Welding
Painting
Machining
Pick/place

● intuitive / minimal syntax
● powerful type system
● robot motions as library code
● functional programming
● formalize backwards-stepping behavior
● access to high-quality libraries (Julia packages)

Why Juliet for Robots?

The Juliet Team
About 15 people contributing to Juliet runtime, compiler, GC, libraries, etc.
2 people working on the compiler:
 Jesper Öqvist
 Erik Jansson

Development Process
Incremental development
Divide and conquer, don't worry about making it perfect from the start.
Regression test!
Each new feature should be tested.

CI/CD
Run tests on a server for each commit (GitLab)

Juliet Compiler
- Written in C
- Scanner: Flex-generated
- Parser: Bison-generated (GLR)
- Semantic analysis: visitor-based
- Code generation: bytecode

Juliet Parsing
Julia is not context-free LR(1) because it allows almost any kind of whitespace anywhere

if x println(x) end

if x
 println(x)
end

Juliet Parsing
Julia is not context-free LR(1) because it allows almost any kind of whitespace anywhere

if x(y, z)
end

if x
 (y, z)
end

function f(x)
 return x
 + 3
end

Julia Parsing
Julia is not context-free LR(1) because it allows almost any kind of whitespace anywhere

function f(x)
 return x
 + 3
end

Julia is not LR(1)
program = es

// Expression list:
es = e | es w e

// Expression:
e = n | n w EQ e

// Name:
n = ID

// Whitespace:
w = WHITESPACE

Juliet Modules
module Foo
 function foo() end
end

Main.Foo.foo()

Name analysis passes:
1. Find all modules and structs. Map structs to respective modules.
2. Declare all function names (in modules), lookup parameter types.
3. Do local name lookup and call resolution.
4. Do a type check pass.

Juliet Type Analysis
The subtype algorithm is described in
Jeff Bezanson's Thesis.

Just implement that ->

Bezanson, J. W. Abstraction in Technical Computing. PhD thesis, Department of
Electrical Engineering and Computer
Science, Massachusetts Institute of Technology. June, 2015.

Juliet Type Analysis
The subtype algorithm is described in
Jeff Bezanson's Thesis.

Just implement that ->

Actually it's not that simple. Must
avoid infinite expanding types. Must
be precise with keeping track of
separate instances of typenames.

struct Onion{A, B}
 onion::Onion{B, A}
end

Bezanson, J. W. Abstraction in Technical Computing. PhD thesis, Department of
Electrical Engineering and Computer
Science, Massachusetts Institute of Technology. June, 2015.

Arrays
Array indexing is translated to function calls:
var a = zeros(Int8, 10)

a[4] = 10 # setindex!(a, 10, 4)

println(a[4]) # getindex(a, 4)

Multimethods make it possible to overload the indexing operator for custom types!l

Exceptions
try
 error("oopsie")
catch e
 println("failed")
finally
 return 0
end

Union Dispatch
Formal parameters can have union type:

function foo(x :: Union{Bool, String}) end

foo(true)

foo("x")

Conversely, multiple functions can be dispatched with a union typed argument.

Declaration Chains
The typical design for name analysis with visitors uses name tables at each scope (function, block, etc).

function Block

Block

Block

IfStmt

TBL

TBL

TBL

TBL

Declaration Chains
Idea: instead store chain of previous declarations from each name use, mapping out the reverse pre-order
of matching name declarations.

function Decl

Block

Use

IfStmt

Decl

