
EDAN65: Compilers, Lecture 05 B

Abstract grammars

Görel Hedin
Revised: 2022-09-06

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

parsing

Abstract grammars

Parse tree

sum = sum + k ;

Stmt

AssignStmt

Exp

Add

Exp Exp

Includes all tokens

sum sum k

AssignStmt

Add

IdExp IdExpIdExp

Abstract tree

Includes important tokens
Simple natural structure

Typed nodes

Example: Concrete vs Abstract

Exp -> Exp "+" Term
Exp -> Term
Term -> ID

Concrete grammar Abstract grammar

Example: Concrete vs Abstract

Exp -> Exp "+" Term
Exp -> Term
Term -> ID

Add: Exp -> Exp Exp
IdExp: Exp -> ID

Concrete grammar Abstract grammar

ID

Add

IdExp IdExp

ID

ID

Exp

Term Term

ID

Exp

+

Productions are named!

Note! Term, Factor, are needed to make
the concrete grammar unambiguous.

Note! An abstract grammar has no relation to token
sequences, so ambiguity is not an issue. Term and
Factor are irrelevant for abstract grammars.

Concrete vs Abstract grammar
Concrete Grammar Abstract Grammar

What does it describe? Describes the concrete
text representation of
programs

Describes the abstract
structure of programs

Main use Parsing text to trees Model representing the
program inside compiler.

Underlying formalism Context-free grammar Recursive data types

What is named? Only nonterminals
(productions are usually
anonymous)

Both nonterminals and
productions.

What tokens occur in the
grammar?

all tokens corresponding
to "words" in the text

usually only tokens with
values (identifiers, literals)

Independent of abstract
structure

Independent of parser and
parser algorithm

Abstract grammar vs. OO model

Add: Exp -> Exp Exp
IdExp: Exp -> ID

Abstract grammar

Abstract grammar OO model Other terminology used
(algebraic datatypes)

nonterminal superclass type, sort

production subclass constructor, operator

Exp

Add IdExp

A canonical abstract grammar corresponds to a two-level class hierarchy!

Example Java implementation

Add: Exp -> Exp Exp
IdExp: Exp -> ID

Abstract grammar

Exp

Add IdExp

abstract class Exp {
}
class Add extends Exp {

Exp exp1, exp2;
}
class IdExp extends Exp {

String ID;
}

JastAdd
• A compiler generation tool. Generates Java code.
• Supports ASTs and modular computations on ASTs.
• JastAdd: "Just add computations to the ast"
• Independent of the parser used.
• Developed at LTH, see https://jastadd.org

JastAdd
• A compiler generation tool. Generates Java code.
• Supports ASTs and modular computations on ASTs.
• JastAdd: "Just add computations to the ast"
• Independent of the parser used.
• Developed at LTH, see https://jastadd.org

L.beaver

Parser specification

*.ast
*.javaBeaver

Parser

JastAdd
• A compiler generation tool. Generates Java code.
• Supports ASTs and modular computations on ASTs.
• JastAdd: "Just add computations to the ast"
• Independent of the parser used.
• Developed at LTH, see https://jastadd.org

L.beaver

Parser specification

*.ast
*.javaBeaver

Parser

*.ast

JastAdd

*.jrag

*.ast
*.ast

*.ast
*.java

Abstract grammar

Computations

AST classes

creates objects

JastAdd abstract grammars
[abstract] Class [: Superclass] ::= RightHandSide;

JastAdd abstract grammars

Program ::= Stmt*;
abstract Stmt;
Assignment : Stmt ::= IdExpr Expr;
IfStmt : Stmt ::= Expr Then:Stmt [Else:Stmt];
abstract Expr;
IdExpr : Expr ::= <ID:String>;
IntExpr : Expr ::= <INT:String>;
BinExpr : Expr ::= Left:Expr Right:Expr;
Add : BinExpr;

[abstract] Class [: Superclass] ::= RightHandSide;

JastAdd abstract grammars

Program ::= Stmt*;
abstract Stmt;
Assignment : Stmt ::= IdExpr Expr;
IfStmt : Stmt ::= Expr Then:Stmt [Else:Stmt];
abstract Expr;
IdExpr : Expr ::= <ID:String>;
IntExpr : Expr ::= <INT:String>;
BinExpr : Expr ::= Left:Expr Right:Expr;
Add : BinExpr;

• Classes instead of nonterminals and productions
• Classes can be abstract (like in Java)
• Arbitrarily deep inheritance hierarchy (not just two levels)
• Support for optional, list, and token components
• Components can be named
• Right-hand side can be inherited from superclass (see BinExpr).
• No parentheses! You need to name all node classes in the AST.

Compared to canonical abstract grammars:

[abstract] Class [: Superclass] ::= RightHandSide;

Generated Java API, ordinary components

abstract Stmt;
WhileStmt : Stmt ::= Cond:Expr Stmt;

Generated Java API, ordinary components

abstract Stmt;
WhileStmt : Stmt ::= Cond:Expr Stmt;

abstract class Stmt extends ASTNode {}

class WhileStmt extends Stmt {
Expr getCond();
Stmt getStmt();

}

Generated Java API, ordinary components

abstract Stmt;
WhileStmt : Stmt ::= Cond:Expr Stmt;

abstract class Stmt extends ASTNode {}

class WhileStmt extends Stmt {
Expr getCond();
Stmt getStmt();

}

getCond() getStmt()

Example AST

WhileStmt

Expr Stmt

Generated Java API, ordinary components

• A general class ASTNode is used as implicit superclass.
• A traversal API with get methods is generated.
• If component names are given, they are used in the API (getCond).
• Otherwise the type names are used (getStmt).

abstract Stmt;
WhileStmt : Stmt ::= Cond:Expr Stmt;

abstract class Stmt extends ASTNode {}

class WhileStmt extends Stmt {
Expr getCond();
Stmt getStmt();

}

getCond() getStmt()

Example AST

WhileStmt

Expr Stmt

Generated Java API, lists

Program ::= Stmt*;

class Program extends ASTNode {
int getNumStmt(); // 0 if empty
Stmt getStmt(int i); // numbered from 0
List<Stmt> getStmts(); // iterator

}

getStmts()

Example AST Program

List<Stmt>

Stmt Stmt Stmt

Generated Java API, lists

Program ::= Stmt*;

class Program extends ASTNode {
int getNumStmt(); // 0 if empty
Stmt getStmt(int i); // numbered from 0
List<Stmt> getStmts(); // iterator

}

getStmts()

Example AST Program

List<Stmt>

Stmt Stmt Stmt

Program p = ...;
for (Stmt s : p.getStmts()) {

...
}

The list is represented by a List object that can
be used as an iterator:

Generated Java API, lists

Program ::= Stmt*;

class Program extends ASTNode {
int getNumStmt(); // 0 if empty
Stmt getStmt(int i); // numbered from 0
List<Stmt> getStmts(); // iterator

}

getStmts()

Example AST Program

List<Stmt>

Stmt Stmt Stmt

Program p = ...;
for (Stmt s : p.getStmts()) {

...
}

The list is represented by a List object that can
be used as an iterator: Program p = ...;

if (p.getNumStmt() >= 1) {
Stmt s = p.getStmt(0);
...

}

Or access a specific statement:

Generated Java API, lists

Program ::= Stmt*;

class Program extends ASTNode {
int getNumStmt(); // 0 if empty
Stmt getStmt(int i); // numbered from 0
List<Stmt> getStmts(); // iterator

}

getStmts()

Example AST Program

List<Stmt>

Stmt Stmt Stmt

Program p = ...;
for (Stmt s : p.getStmts()) {

...
}

The list is represented by a List object that can
be used as an iterator: Program p = ...;

if (p.getNumStmt() >= 1) {
Stmt s = p.getStmt(0);
...

}

Or access a specific statement:

Note! List is a JastAdd-specific class
(like ASTNode and Opt). It is not the
same class as java.util.List.

Generated Java API, optionals

A ::= B [C];

class A extends ASTNode {
B getB();
boolean hasC();
C getC(); //Exception if not hasC()

}

Example AST

A

Opt<C>

C

B

• The traversal API includes a has method for the optional component.

General traversal

A ::= B [C];
B ::= ...;
C ::= ...;
D : A ::= ...;

ASTNode

A B C

Abstract grammar

Opt List

D

class ASTNode {
Iterable astChildren(); //Iterator for the children

}

Will stop also at Opt and List nodes.
Can be used for general traversal of the children of a node.

void ASTNode.m() {
...
for (ASTNode child : astChildren()) { ... }

}

Low-level traversal API

A ::= B [C];
B ::= ...;
C ::= ...;
D : A ::= ...;

ASTNode

A B C

Abstract grammar

Opt List

D

class ASTNode {
int getNumChild();
ASTNode getChild(int i);
ASTNode getParent(); // null for the root

}

Will stop also at Opt and List nodes.
This low-level API is not recommended.
Use iterator or high-level API instead – much more readable.

Connection to Beaver

A ::= B [C];
B ::= ...;
C ::= ...;

ASTNode

A B C

beaver.Symbol

Beaver

JastAdd abstract grammar

Opt List

LangParser

<<create>>

a = b [c]; {: return new A... :}
b = ... ; {: return new B... :}
c = ... ; {: return new C... :}

JastAdd

Beaver spec

Defining an abstract grammar

• What kinds of objects are there in the AST?
E.g., Program, WhileStmt, Assignment, Add, ...

• What are the generalized concepts (abstract classes)?
E.g., Statement, Expression, ...

• What are the components of an object?
E.g., an Assignment has an Identifier and an Expression...

This is object-oriented modeling!

Defining an abstract grammar

• What kinds of objects are there in the AST?
E.g., Program, WhileStmt, Assignment, Add, ...

• What are the generalized concepts (abstract classes)?
E.g., Statement, Expression, ...

• What are the components of an object?
E.g., an Assignment has an Identifier and an Expression...

Program ::= ...;
abstract Statement;
abstract Expression;
WhileStmt : Statement ::= ...;
Assignment : Statement ::= Identifier Expression;
...

This is object-oriented modeling!

Use good names!

when you write... ...the following should make sense

A : B ::= ... An A is a special kind of B

C ::= D E F A C has a D, an E, and an F

D ::= X:E Y:E A D has one E called X and another E called Y

G ::= [H] A G may have an H

J ::= <K:T> A J has a K token of type T

L ::= M* An L has zero or more Ms

Use good names!

when you write... ...the following should make sense

A : B ::= ... An A is a special kind of B

C ::= D E F A C has a D, an E, and an F

D ::= X:E Y:E A D has one E called X and another E called Y

G ::= [H] A G may have an H

J ::= <K:T> A J has a K token of type T

L ::= M* An L has zero or more Ms

Examples of bad naming
(from inexperienced
programmers)

Good naming

A ::= [OptParam];
OptParam ::= Name Type;

A ::= [Param];
Param ::= Name Type;

A ::= Stmts*;
abstract Stmts;
While : Stmts ::= Exp Stmts;

A ::= Stmt*;
abstract Stmt;
While : Stmt ::= Exp Stmt;

Design simple abstract grammars!
• Abstract grammars should be clear and simple
• Don't let parsing details creep into the abstract grammar

Design simple abstract grammars!

Bad abstract grammar
(parsing inspired)

Good abstract grammar
(simple, conceptual)

A ::= First:B Rest:B* A ::= B*

Add : Exp ::= Left:Exp Right:Term Add : Exp ::= Left:Exp Right:Exp

• Abstract grammars should be clear and simple
• Don't let parsing details creep into the abstract grammar

Design simple abstract grammars!

Bad abstract grammar
(parsing inspired)

Good abstract grammar
(simple, conceptual)

A ::= First:B Rest:B* A ::= B*

Add : Exp ::= Left:Exp Right:Term Add : Exp ::= Left:Exp Right:Exp

• Abstract grammars should be clear and simple
• Don't let parsing details creep into the abstract grammar

• "At least one child" can easily be checked by a semantic check. Don't impose a
more complex structure just to check this.

• Term, Factor, etc. is a parsing issue. Don't put Term and Factor in your abstract
grammar!!

Design a parsing grammar

• Design the abstract grammar first.

• Then design a high-level concrete grammar, making it as similar as possible to the
abstract grammar.
• Replace inheritance with alternative productions
• The grammar will probably be ambiguous

• Then design a low-level concrete grammar, suitable for a particular parsing
algorithm/tool.
For Beaver:
• Eliminate ambiguities
• Eliminate repetition and optionals (will make it easier to construct the AST)

Semantic actions in parsers

Semantic actions in parsers

• Code that is added to a parser, to perform actions during parsing.

• Usually, to build the AST.

• Old-style 1-pass compilers did the whole compilation as semantic actions.

• Parser generators support semantic actions in the parser specification.

Beaver example

stmt -> ifStmt | assignment
ifStmt -> IF "(" expr ")" stmt
assignment -> ID ASSIGN expr ";"

High-level CFG

abstract Stmt;
IfStmt : Stmt ::= Expr Stmt;
Assignment : Stmt ::= IdExpr Expr;
IdExpr : Expr ::= <ID:String>;

Abstract grammar

Beaver example

stmt -> ifStmt | assignment
ifStmt -> IF "(" expr ")" stmt
assignment -> ID ASSIGN expr ";"

%class "LangParser";
%package "lang";
...
%terminals IF, LPAREN, RPAREN, ID, ASSIGN, SEMICOLON;

%goal stmt; // The start symbol

// Context-free grammar
stmt = ifStmt | assignment;
ifStmt = IF LPAREN expr RPAREN stmt;
assignment = ID ASSIGN expr SEMICOLON;

High-level CFG

beaver spec without semantic actions:

abstract Stmt;
IfStmt : Stmt ::= Expr Stmt;
Assignment : Stmt ::= IdExpr Expr;
IdExpr : Expr ::= <ID:String>;

Abstract grammar

Beaver example

%class "LangParser";
%package "lang";
...
%terminals IF, LPAREN, RPAREN, ID, ASSIGN, SEMICOLON;

%goal stmt; // The start symbol

%typeof stmt = "Stmt";
%typeof ifStmt = "IfStmt";
%typeof assignment = "Assignment";

// Context-free grammar
stmt = ifStmt | assignment;
ifStmt = IF LPAREN expr.e RPAREN stmt.s {: return new IfStmt(e, s); :} ;
assignment =

ID.id ASSIGN expr.e SEMICOLON {: return new Assignment(new IdExpr(id),e); :} ;

beaver spec with semantic actions:
abstract Stmt;
IfStmt : Stmt ::= Expr Stmt;
Assignment : Stmt ::= IdExpr Expr;
IdExpr : Expr ::= <ID:String>;

Abstract grammar

semantic actions build the trees
variables capture token strings and subtrees for nonterminals
the nonterminals return objects of the abstract grammar classes

Summary questions: Abstract syntax trees

• What is the difference between an abstract and a concrete syntax tree?
• What is the difference between an abstract and a concrete grammar?
• What is the correspondence between an abstract grammar and an object-

oriented model?
• Orientation about JastAdd abstract grammars, traversal API, and connection to

Beaver.
• What are properties of a good abstract grammar?
• What is a "semantic action"?
• How can Beaver be used for building ASTs?

