
EDAN65: Compilers, Lecture 05 A

LL parsing
Nullable, FIRST, and FOLLOW

Görel Hedin
Revised: 2022-09-06

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

LL parsing
Nullable, FIRST, FOLLOW

Algorithm for constructing an LL(1) parser

3

Fairly simple. The non-trivial part:
how to select the correct production p for X, based on the lookahead token.

X

... t1 ... tn tn+1 ...

FIRST FOLLOW

p1: X -> ...
p2: X -> ...

Algorithm for constructing an LL(1) parser

4

Fairly simple. The non-trivial part:
how to select the correct production p for X, based on the lookahead token.

X

... t1 ... tn tn+1 ...

FIRST FOLLOW

p1: X -> ...
p2: X -> ...

• Which tokens can occur in the FIRST position?
• Can one of the productions derive the empty

string? I.e., is it "Nullable"?
• If it is Nullable, which tokens can occur in the

FOLLOW position?

Steps in constructing an LL(1) parser

5

1. Write the grammar on canonical form

2. Compute Nullable, FIRST, and FOLLOW.

3. Use them to construct a table. It shows what production to select, given
the current lookahead token.

4. Conflicts in the table? The grammar is not LL(1).

5. No conflicts? Straightforward implementation using table-driven parser or
recursive descent.

t1 t2 t3 t4
X1 p1 p2

X2 p3 p3 p4

Example:
Construct the LL(1) table for this grammar:

6

p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement

assignment

compoundStmt

statements

Example:
Construct the LL(1) table for this grammar:

7

p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement

assignment

compoundStmt

statements

For each production p: X -> g, we are interested in:
FIRST(g) – the tokens that occur first in a sentence derived from g.
Nullable(g) – is it possible to derive e from g? And if so:
FOLLOW(X) – the tokens that can occur immediately after an X-sentence.

Example:
Construct the LL(1) table for this grammar:

8

p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement

assignment

compoundStmt

statements

To construct the table, look at each production p: X -> g.
Compute the token set FIRST(g). Add p to each corresponding entry for X.
Then, check if g is Nullable. If so, compute the token set FOLLOW(X),
and add p to each corresponding entry for X.

Example:
Construct the LL(1) table for this grammar:

9

p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement p1 p2

assignment p3

compoundStmt p4

statements p5 p5 p6

To construct the table, look at each production p: X -> g.
Compute the token set FIRST(g). Add p to each corresponding entry for X.
Then, check if g is Nullable. If so, compute the token set FOLLOW(X),
and add p to each corresponding entry for X.

Example:
Dealing with End of File:

10

p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> e

ID integer boolean "=" ";" INT

varDecl

type

optInit

Example:
Dealing with End of File:

11

p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> e

ID integer boolean "=" ";" INT $

S

varDecl

type

optInit

Example:
Dealing with End of File:

12

p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> e

ID integer boolean "=" ";" INT $

S p0 p0

varDecl p1 p1

type p2 p3

optInit p4 p5

Example:
Ambiguous grammar:

13

p1: E -> E "+" E
p2: E -> ID
p3: E -> INT

"+" ID INT

E

Example:
Ambiguous grammar:

14

p1: E -> E "+" E
p2: E -> ID
p3: E -> INT

"+" ID INT

E p1, p2 p1, p3

Collision in a table entry!
The grammar is not LL(1)

An ambiguous grammar is not even LL(k) –
adding more lookahead does not help.

Example:
Unambiguous, but left-recursive grammar:

15

p1: E -> E "*" F
p2: E -> F
p3: F -> ID
p4: F -> INT

"*" ID INT

E

F

Example:
Unambiguous, but left-recursive grammar:

16

p1: E -> E "*" F
p2: E -> F
p3: F -> ID
p4: F -> INT

"*" ID INT

E p1,p2 p1,p2

F p3 p4

Collision in a table entry!
The grammar is not LL(1)

A grammar with left-recursion is not even LL(k) –
adding more lookahead does not help.

Example:
Grammar with common prefix:

17

p1: E -> F "*" E
p2: E -> F
p3: F -> ID
p4: F -> INT
p5: F -> "(" E ")"

"*" ID INT "(" ")"

E

F

Example:
Grammar with common prefix:

18

p1: E -> F "*" E
p2: E -> F
p3: F -> ID
p4: F -> INT
p5: F -> "(" E ")"

"*" ID INT "(" ")"

E p1,p2 p1,p2 p1,p2

F p3 p4 p5

Collision in a table entry!
The grammar is not LL(1)

A grammar with common prefix is not LL(1).
Some grammars with common prefix are LL(k), for some k, –

but not this one.

Summary: constructing an LL(1) parser

19

1. Write the grammar on canonical form

2. Compute Nullable, FIRST, and FOLLOW.

3. Use them to construct a table. It shows what production to select, given
the current lookahead token.

4. Conflicts in the table? The grammar is not LL(1).

5. No conflicts? Straight forward implementation using table-driven parser or
recursive descent.

Algorithm for constructing an LL(1) table

20

initialize all entries table[Xi, tj] to the empty set.

for each production p: X -> g
for each t ∈ FIRST(g)

add p to table[X, t]
if Nullable(g)

for each t ∈ FOLLOW(X)
add p to table[X, t]

t1 t2 t3 t4
X1 p1 p2

X2 p3 p3 p4

If some entry has more than one element, then the
grammar is not LL(1).

Exercise: what is Nullable(X)?

21

Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X

Y

Z

Solution: what is Nullable(X)

22

Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X true

Y true

Z false

X => Y => e yes, X is Nullable

Y => e yes, Y is Nullable

Z => XYZ => YYZ =>* Z => XYZ ... no, Z is not Nullable, we cannot derive e

Definition of Nullable

23

Definition of Nullable

24

Definition
Nullable(g) is true iff the empty sequence can be derived from g, i.e.,

iff there exists a derivation g =>* e
(g is a sequence of terminals and nonterminals)

Definition of Nullable

25

Definition
Nullable(g) is true iff the empty sequence can be derived from g, i.e.,

iff there exists a derivation g =>* e
(g is a sequence of terminals and nonterminals)

Do case analysis to get equation system for Nullable, given G=(N,T,P,S)
Nullable(e) == true (1)

Nullable(t) == false (2)
where t ∈ T, i.e., t is a terminal symbol

Nullable(X) == Nullable (g1) || ... || Nullable (gn) (3)
where X -> g1, ... X -> gn are all the productions for X in P

Nullable(sg) == Nullable (s) && Nullable (g) (4)
where s ∈ N ∪ T, i.e., s is a nonterminal or a terminal

The equations for Nullable are recursive.
How would you write a program that computes Nullable (X)?
Just using recursive functions could lead to nontermination!

Fixed-point problems

26

Fixed-point problems

27

Computing Nullable(X) is an example of a fixed-point problem.

These problems have the form:

x == f(x)

Can we find a value x for which the equation holds (i.e., a solution)?
x is then called a fixed point of the function f.

Fixed-point problems can (sometimes) be solved using iteration:
Guess an initial value x0, then apply the function iteratively, until the fixed point
is reached:

x1 := f(x0);
x2 := f(x1);
...
xn := f(xn-1);

until xn== xn-1

This is called a fixed-point iteration, and xn is the fixed point.

Implement Nullable by a fixed-point iteration

28

Implement Nullable by a fixed-point iteration

29

represent Nullable as an array nlbl[] of boolean variables
initialize all nlbl[X] to false

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = nlbl(g1) || ... || nlbl(gn)
if newValue != nlbl[X] then

nlbl[X] = newValue
changed = true

fi
do

until !changed

where nlbl(g) is computed using the current values in nlbl[].

Implement Nullable by a fixed-point iteration

30

The computation will terminate because
- the variables are only changed monotonically (from false to true)
- the number of possible changes is finite (from all false to all true)

represent Nullable as an array nlbl[] of boolean variables
initialize all nlbl[X] to false

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = nlbl(g1) || ... || nlbl(gn)
if newValue != nlbl[X] then

nlbl[X] = newValue
changed = true

fi
do

until !changed

where nlbl(g) is computed using the current values in nlbl[].

Exercise: compute Nullable(X)

31

Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

iter0 iter1 iter2 iter3
X f

Y f

Z f

nlbl[]

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = nlbl(g1) || ... || nlbl(gn)

In each iteration, compute:

where nlbl(g) is computed using the current values in nlbl[].

Solution: compute Nullable(X)

32

Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

iter0 iter1 iter2 iter3
X f f t t

Y f t t t

Z f f f f

nlbl[]

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = nlbl(g1) || ... || nlbl(gn)

In each iteration, compute:

where nlbl(g) is computed using the current values in nlbl[].

Definition of FIRST

33

Definition of FIRST

34

FIRST(g) is the set of tokens that can occur first in sentences derived from g :
FIRST(g) = {t ∈ T | g =>* t d}

Definition of FIRST

35

FIRST(g) is the set of tokens that can occur first in sentences derived from g :
FIRST(g) = {t ∈ T | g =>* t d}

Do case analysis to get equation system for FIRST, given G=(N,T,P,S)
FIRST(e) == ∅ (1)

FIRST(t) == { t } (2)
where t ∈ T, i.e., t is a terminal symbol

FIRST(X) == FIRST(g1) ∪ ... ∪ FIRST(gn) (3)
where X -> g1, ... X -> gn are all the productions for X in P

FIRST(sg) == FIRST(s) ∪ (if Nullable(s) then FIRST(g) else ∅ fi) (4)
where s ∈ N ∪ T, i.e., s is a nonterminal or a terminal

The equations for FIRST are recursive.
Compute using fixed-point iteration.

Implement FIRST by a fixed-point iteration

36

Implement FIRST by a fixed-point iteration

37

represent FIRST as an array FIRST[] of token sets
initialize all FIRST[X] to the empty set

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)
if newValue != FIRST[X] then

FIRST[X] = newValue
changed = true

fi
do

until !changed

where FIRST(g) is computed using the current values in FIRST[].

Implement FIRST by a fixed-point iteration

38

The computation will terminate because
- the variables are changed monotonically (using set union)
- the largest possible set is finite: T, the set of all tokens
- the number of possible changes is therefore finite

represent FIRST as an array FIRST[] of token sets
initialize all FIRST[X] to the empty set

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)
if newValue != FIRST[X] then

FIRST[X] = newValue
changed = true

fi
do

until !changed

where FIRST(g) is computed using the current values in FIRST[].

Solution: compute FIRST(X)

39

Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X t

Y t

Z f

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)

In each iteration, compute:

where FIRST(g) is computed using the current values in FIRST[].

iter0 iter1 iter2 iter3
X ∅
Y ∅
Z ∅

FIRST[]

Exercise: compute FIRST(X)

40

Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X t

Y t

Z f

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)

In each iteration, compute:

where FIRST(g) is computed using the current values in FIRST[].

iter0 iter1 iter2 iter3
X ∅ {a} {a, c} {a, c}

Y ∅ {c} {c} {c}

Z ∅ {a, c, d} {a, c, d} {a, c, d}

FIRST[]

Definition of FOLLOW

41sentential form — sequence of terminal and nonterminal symbols

Definition of FOLLOW

42

FOLLOW(X) is the set of tokens that can occur as the first token following X, in
any sentential form derived from the start symbol S:

FOLLOW(X) = {t ∈ T | S =>* a X t b}

Definition of FOLLOW

43

FOLLOW(X) is the set of tokens that can occur as the first token following X, in
any sentential form derived from the start symbol S:

FOLLOW(X) = {t ∈ T | S =>* a X t b}

The nonterminal X occurs in the right-hand side of a number of productions.

Let Y -> g X d denote such an occurrence, where g and d are arbitrary sequences
of terminals and nonterminals.

Equation system for FOLLOW, given G=(N,T,P,S)

FOLLOW(X) == ∪ FOLLOW(Y -> g X d), (1)
over all occurrences Y -> g X d

and where
FOLLOW(Y -> g X d) == (2)

FIRST(d) ∪ (if Nullable(d) then FOLLOW(Y) else ∅ fi)

The equations for FOLLOW are recursive.
Compute using fixed-point iteration.

sentential form — sequence of terminal and nonterminal symbols

Implement FOLLOW by a fixed-point iteration

44

Implement FOLLOW by a fixed-point iteration

45

represent FOLLOW as an array FOLLOW[] of token sets
initialize all FOLLOW[X] to the empty set

repeat
changed = false
for each nonterminal X do
newValue == ∪ FOLLOW(Y -> g X d), for each occurrence Y -> g X d
if newValue != FOLLOW[X] then

FOLLOW[X] = newValue
changed = true

fi
do

until !changed

where FOLLOW(Y -> g X d) is computed using the current values in FOLLOW[].

Implement FOLLOW by a fixed-point iteration

46

Again, the computation will terminate because
- the variables are changed monotonically (using set union)
- the largest possible set is finite: T

represent FOLLOW as an array FOLLOW[] of token sets
initialize all FOLLOW[X] to the empty set

repeat
changed = false
for each nonterminal X do
newValue == ∪ FOLLOW(Y -> g X d), for each occurrence Y -> g X d
if newValue != FOLLOW[X] then

FOLLOW[X] = newValue
changed = true

fi
do

until !changed

where FOLLOW(Y -> g X d) is computed using the current values in FOLLOW[].

Exercise: compute FOLLOW(X)

47

S -> Z $
Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable FIRST

X t {a, c}

Y t {c}

Z f {a, c, d}

newValue == ∪ FOLLOW(Y -> g X d), for each occurrence Y -> g X d

In each iteration, compute:

where FOLLOW(Y -> g X d) is computed using the current values in FOLLOW[].

iter0 iter1 iter2 iter3
X ∅
Y ∅
Z ∅

FOLLOW[]

The grammar has
been extended with
end of file, $.

Solution: compute FOLLOW(X)

48

S -> Z $
Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable FIRST

X t {a, c}

Y t {c}

Z f {a, c, d}

newValue == U FOLLOW(Y -> g X d), for each occurrence Y -> g X d

In each iteration, compute:

where FOLLOW(Y -> g X d) is computed using the current values in FOLLOW[].

iter0 iter1 iter2 iter3
X ∅ {a, c, d} {a, c, d}

Y ∅ {a, c, d} {a, c, d}

Z ∅ {$} {$}

FOLLOW[]

The grammar has
been extended with
end of file, $.

Summary questions

49

• Construct an LL(1) table for a grammar.
• What does it mean if there is a collision in an LL(1) table?
• Why can it be useful to add an end-of-file rule to some grammars?
• How can we decide if a grammar is LL(1) or not?
• What is the definition of Nullable, FIRST, and FOLLOW?
• What is a fixed-point problem?
• How can it be solved using iteration?
• How can we know that the computation terminates?

