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Algorithm for constructing an LL(1) parser

3

Fairly simple. The non-trivial part:
how to select the correct production p for X, based on the lookahead token. 

X

...    t1    ...     tn tn+1 ...

FIRST FOLLOW

p1: X -> ...
p2: X -> ...



Algorithm for constructing an LL(1) parser
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Fairly simple. The non-trivial part:
how to select the correct production p for X, based on the lookahead token. 

X

...    t1    ...     tn tn+1 ...

FIRST FOLLOW

p1: X -> ...
p2: X -> ...

• Which tokens can occur in the FIRST position?
• Can one of the productions derive the empty 

string? I.e., is it "Nullable"?
• If it is Nullable, which tokens can occur in the 

FOLLOW position?



Steps in constructing an LL(1) parser
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1. Write the grammar on canonical form

2. Compute Nullable, FIRST, and FOLLOW.

3. Use them to construct a table. It shows what production to select, given 
the current lookahead token.

4. Conflicts in the table? The grammar is not LL(1).

5. No conflicts? Straightforward implementation using table-driven parser or 
recursive descent.

t1 t2 t3 t4
X1 p1 p2

X2 p3 p3 p4



Example:
Construct the LL(1) table for this grammar:
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p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement

assignment

compoundStmt 

statements 



Example:
Construct the LL(1) table for this grammar:
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p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement

assignment

compoundStmt 

statements 

For each production p: X -> g, we are interested in:
FIRST(g) – the tokens that occur first in a sentence derived from g.
Nullable(g) – is it possible to derive e from g? And if so:
FOLLOW(X) – the tokens that can occur immediately after an X-sentence.



Example:
Construct the LL(1) table for this grammar:
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p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement

assignment

compoundStmt 

statements 

To construct the table, look at each production p: X -> g.
Compute the token set FIRST(g). Add p to each corresponding entry for X.
Then, check if g is Nullable. If so, compute the token set FOLLOW(X),
and add p to each corresponding entry for X.



Example:
Construct the LL(1) table for this grammar:
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p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> e

ID "=" ";" "{" "}"

statement p1 p2

assignment p3

compoundStmt p4

statements p5 p5 p6

To construct the table, look at each production p: X -> g.
Compute the token set FIRST(g). Add p to each corresponding entry for X.
Then, check if g is Nullable. If so, compute the token set FOLLOW(X),
and add p to each corresponding entry for X.



Example:
Dealing with End of File:
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p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> e

ID integer boolean "=" ";" INT

varDecl

type

optInit



Example:
Dealing with End of File:
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p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> e

ID integer boolean "=" ";" INT $

S

varDecl

type

optInit



Example:
Dealing with End of File:
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p0: S -> varDecl $
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> e

ID integer boolean "=" ";" INT $

S p0 p0

varDecl p1 p1

type p2 p3

optInit p4 p5



Example:
Ambiguous grammar:
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p1: E -> E "+" E
p2: E -> ID
p3: E -> INT

"+" ID INT

E



Example:
Ambiguous grammar:

14

p1: E -> E "+" E
p2: E -> ID
p3: E -> INT

"+" ID INT

E p1, p2 p1, p3

Collision in a table entry!
The grammar is not LL(1)

An ambiguous grammar is not even LL(k) –
adding more lookahead does not help.



Example:
Unambiguous, but left-recursive grammar:
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p1: E -> E "*" F
p2: E -> F
p3: F -> ID
p4: F -> INT

"*" ID INT

E

F



Example:
Unambiguous, but left-recursive grammar:
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p1: E -> E "*" F
p2: E -> F
p3: F -> ID
p4: F -> INT

"*" ID INT

E p1,p2 p1,p2

F p3 p4

Collision in a table entry!
The grammar is not LL(1)

A grammar with left-recursion is not even LL(k) –
adding more lookahead does not help.



Example:
Grammar with common prefix:
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p1: E -> F "*" E
p2: E -> F
p3: F -> ID
p4: F -> INT
p5: F -> "(" E ")"

"*" ID INT "(" ")"

E

F



Example:
Grammar with common prefix:
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p1: E -> F "*" E
p2: E -> F
p3: F -> ID
p4: F -> INT
p5: F -> "(" E ")"

"*" ID INT "(" ")"

E p1,p2 p1,p2 p1,p2

F p3 p4 p5

Collision in a table entry!
The grammar is not LL(1)

A grammar with common prefix is not LL(1).
Some grammars with common prefix are LL(k), for some k, –

but not this one.



Summary: constructing an LL(1) parser
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1. Write the grammar on canonical form

2. Compute Nullable, FIRST, and FOLLOW.

3. Use them to construct a table. It shows what production to select, given 
the current lookahead token.

4. Conflicts in the table? The grammar is not LL(1).

5. No conflicts? Straight forward implementation using table-driven parser or 
recursive descent.



Algorithm for constructing an LL(1) table
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initialize all entries table[Xi, tj] to the empty set.

for each production p: X -> g
for each t ∈ FIRST(g)

add p to table[X, t]
if Nullable(g)

for each t ∈ FOLLOW(X)
add p to table[X, t]

t1 t2 t3 t4
X1 p1 p2

X2 p3 p3 p4

If some entry has more than one element, then the 
grammar is not LL(1).



Exercise: what is Nullable(X)? 
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Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X

Y

Z



Solution: what is Nullable(X) 
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Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X true

Y true

Z false

X => Y => e yes, X is Nullable

Y => e yes, Y is Nullable

Z => XYZ => YYZ =>* Z => XYZ ... no, Z is not Nullable, we cannot derive e



Definition of Nullable
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Definition of Nullable
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Definition
Nullable(g) is true iff the empty sequence can be derived from g, i.e.,

iff there exists a derivation g =>* e
(g is a sequence of terminals and nonterminals)



Definition of Nullable
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Definition
Nullable(g) is true iff the empty sequence can be derived from g, i.e.,

iff there exists a derivation g =>* e
(g is a sequence of terminals and nonterminals)

Do case analysis to get equation system for Nullable, given G=(N,T,P,S)
Nullable(e) == true (1)

Nullable(t) == false (2)
where t ∈ T, i.e., t is a terminal symbol

Nullable(X) == Nullable (g1) || ... || Nullable (gn) (3)
where X -> g1, ... X -> gn are all the productions for X in P

Nullable(sg) == Nullable (s) && Nullable (g) (4)
where s ∈ N ∪ T, i.e., s is a nonterminal or a terminal

The equations for Nullable are recursive.
How would you write a program that computes Nullable (X)?
Just using recursive functions could lead to nontermination!



Fixed-point problems
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Fixed-point problems
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Computing Nullable(X) is an example of a fixed-point problem.

These problems have the form:

x == f(x)

Can we find a value x for which the equation holds (i.e., a solution)?
x is then called a fixed point of the function f.

Fixed-point problems can (sometimes) be solved using iteration:
Guess an initial value x0, then apply the function iteratively, until the fixed point 
is reached:

x1 := f(x0);
x2 := f(x1);
...
xn := f(xn-1);

until xn== xn-1

This is called a fixed-point iteration, and xn is the fixed point.



Implement Nullable by a fixed-point iteration
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Implement Nullable by a fixed-point iteration
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represent Nullable as an array nlbl[ ] of boolean variables
initialize all nlbl[X] to false

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = nlbl(g1) || ... || nlbl(gn)
if newValue != nlbl[X] then

nlbl[X] = newValue
changed = true

fi
do

until !changed

where nlbl(g) is computed using the current values in nlbl[ ].



Implement Nullable by a fixed-point iteration
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The computation will terminate because
- the variables are only changed monotonically (from false to true)
- the number of possible changes is finite (from all false to all true)

represent Nullable as an array nlbl[ ] of boolean variables
initialize all nlbl[X] to false

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = nlbl(g1) || ... || nlbl(gn)
if newValue != nlbl[X] then

nlbl[X] = newValue
changed = true

fi
do

until !changed

where nlbl(g) is computed using the current values in nlbl[ ].



Exercise: compute Nullable(X) 
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Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

iter0 iter1 iter2 iter3
X f

Y f

Z f

nlbl[ ]

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = nlbl(g1) || ... || nlbl(gn)

In each iteration, compute:

where nlbl(g) is computed using the current values in nlbl[ ].



Solution: compute Nullable(X) 
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Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

iter0 iter1 iter2 iter3
X f f t t

Y f t t t

Z f f f f

nlbl[ ]

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = nlbl(g1) || ... || nlbl(gn)

In each iteration, compute:

where nlbl(g) is computed using the current values in nlbl[ ].



Definition of FIRST
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Definition of FIRST

34

FIRST(g) is the set of tokens that can occur first in sentences derived from g :
FIRST(g) = {t ∈ T | g =>* t d}



Definition of FIRST
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FIRST(g) is the set of tokens that can occur first in sentences derived from g :
FIRST(g) = {t ∈ T | g =>* t d}

Do case analysis to get equation system for FIRST, given G=(N,T,P,S)
FIRST(e) == ∅ (1)

FIRST(t) == { t } (2)
where t ∈ T, i.e., t is a terminal symbol

FIRST(X) == FIRST(g1) ∪ ... ∪ FIRST(gn) (3)
where X -> g1, ... X -> gn are all the productions for X in P

FIRST(sg) == FIRST(s) ∪ (if Nullable(s) then FIRST(g) else ∅ fi) (4)
where s ∈ N ∪ T, i.e., s is a nonterminal or a terminal

The equations for FIRST are recursive.
Compute using fixed-point iteration.



Implement FIRST by a fixed-point iteration
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Implement FIRST by a fixed-point iteration
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represent FIRST as an array FIRST[ ] of token sets
initialize all FIRST[X] to the empty set

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)
if newValue != FIRST[X] then

FIRST[X] = newValue
changed = true

fi
do

until !changed

where FIRST(g) is computed using the current values in FIRST[ ].



Implement FIRST by a fixed-point iteration
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The computation will terminate because
- the variables are changed monotonically (using set union)
- the largest possible set is finite: T, the set of all tokens
- the number of possible changes is therefore finite

represent FIRST as an array FIRST[ ] of token sets
initialize all FIRST[X] to the empty set

repeat
changed = false
for each nonterminal X with productions X -> g1, ..., X -> gn do
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)
if newValue != FIRST[X] then

FIRST[X] = newValue
changed = true

fi
do

until !changed

where FIRST(g) is computed using the current values in FIRST[ ].



Solution: compute FIRST(X) 
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Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X t

Y t

Z f

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)

In each iteration, compute:

where FIRST(g) is computed using the current values in FIRST[ ].

iter0 iter1 iter2 iter3
X ∅
Y ∅
Z ∅

FIRST[ ]



Exercise: compute FIRST(X) 
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Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable

X t

Y t

Z f

for each nonterminal X with productions X -> g1, ..., X -> gn
newValue = FIRST(g1) ∪ ... ∪ FIRST(gn)

In each iteration, compute:

where FIRST(g) is computed using the current values in FIRST[ ].

iter0 iter1 iter2 iter3
X ∅ {a} {a, c} {a, c}

Y ∅ {c} {c} {c}

Z ∅ {a, c, d} {a, c, d} {a, c, d}

FIRST[ ]



Definition of FOLLOW

41sentential form — sequence of terminal and nonterminal symbols 



Definition of FOLLOW
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FOLLOW(X) is the set of tokens that can occur as the first token following X, in 
any sentential form derived from the start symbol S:

FOLLOW(X) = {t ∈ T | S =>* a X t b}



Definition of FOLLOW
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FOLLOW(X) is the set of tokens that can occur as the first token following X, in 
any sentential form derived from the start symbol S:

FOLLOW(X) = {t ∈ T | S =>* a X t b}

The nonterminal X occurs in the right-hand side of a number of productions.

Let Y -> g X d denote such an occurrence, where g and d are arbitrary sequences
of terminals and nonterminals.

Equation system for FOLLOW, given G=(N,T,P,S)

FOLLOW(X) == ∪ FOLLOW(Y -> g X d ), (1)
over all occurrences Y -> g X d

and where
FOLLOW(Y -> g X d ) == (2)

FIRST(d) ∪ (if Nullable(d) then FOLLOW(Y) else ∅ fi)

The equations for FOLLOW are recursive.
Compute using fixed-point iteration.

sentential form — sequence of terminal and nonterminal symbols 



Implement FOLLOW by a fixed-point iteration

44



Implement FOLLOW by a fixed-point iteration
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represent FOLLOW as an array FOLLOW[ ] of token sets
initialize all FOLLOW[X] to the empty set

repeat
changed = false
for each nonterminal X do
newValue == ∪ FOLLOW(Y -> g X d ), for each occurrence Y -> g X d
if newValue != FOLLOW[X] then

FOLLOW[X] = newValue
changed = true

fi
do

until !changed

where FOLLOW(Y -> g X d ) is computed using the current values in FOLLOW[ ].



Implement FOLLOW by a fixed-point iteration
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Again, the computation will terminate because
- the variables are changed monotonically (using set union)
- the largest possible set is finite: T

represent FOLLOW as an array FOLLOW[ ] of token sets
initialize all FOLLOW[X] to the empty set

repeat
changed = false
for each nonterminal X do
newValue == ∪ FOLLOW(Y -> g X d ), for each occurrence Y -> g X d
if newValue != FOLLOW[X] then

FOLLOW[X] = newValue
changed = true

fi
do

until !changed

where FOLLOW(Y -> g X d ) is computed using the current values in FOLLOW[ ].



Exercise: compute FOLLOW(X) 
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S -> Z $
Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable FIRST

X t {a, c}

Y t {c}

Z f {a, c, d}

newValue == ∪ FOLLOW(Y -> g X d ), for each occurrence Y -> g X d

In each iteration, compute:

where FOLLOW(Y -> g X d ) is computed using the current values in FOLLOW[ ].

iter0 iter1 iter2 iter3
X ∅
Y ∅
Z ∅

FOLLOW[ ]

The grammar has 
been extended with
end of file, $.



Solution: compute FOLLOW(X) 
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S -> Z $
Z -> d
Z -> X Y Z
Y -> e
Y -> c
X -> Y
X -> a

Nullable FIRST

X t {a, c}

Y t {c}

Z f {a, c, d}

newValue == U FOLLOW(Y -> g X d ), for each occurrence Y -> g X d

In each iteration, compute:

where FOLLOW(Y -> g X d ) is computed using the current values in FOLLOW[ ].

iter0 iter1 iter2 iter3
X ∅ {a, c, d} {a, c, d}

Y ∅ {a, c, d} {a, c, d}

Z ∅ {$} {$}

FOLLOW[ ]

The grammar has 
been extended with
end of file, $.



Summary questions
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• Construct an LL(1) table for a grammar.
• What does it mean if there is a collision in an LL(1) table?
• Why can it be useful to add an end-of-file rule to some grammars?
• How can we decide if a grammar is LL(1) or not?
• What is the definition of Nullable, FIRST, and FOLLOW?
• What is a fixed-point problem?
• How can it be solved using iteration?
• How can we know that the computation terminates?


