
EDAN65: Compilers, Lecture 04

Grammar equivalence,
eliminating ambiguities,
adapting to LL parsing

Görel Hedin
Revised: 2022-09-05

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

Space of context-free grammars

3

Ambiguous

Unambiguous

All context-free grammars

LR

LL

LL:
Builds tree top-down
Simple to understand

LR:
Builds tree bottom-up
More powerful

4

Ambiguous grammars

Recall: the definition of ambiguity

5

Grammar:
Exp -> Exp "+" Exp
Exp -> Exp "*" Exp
Exp -> INT

Exp

Exp Exp

Exp Exp

"+"

INT
"*"

INT INT

Exp

Exp"*"

INT

Exp

Exp Exp"+"

INT INT

A CFG is ambiguous if there is a sentence
in the language that can be derived by
two (or more) different parse trees.

Strategies for dealing with ambiguities

6

Strategies for dealing with ambiguities

7

First, decide which parse tree is the desired one.

Eliminate the ambiguity:
Create an equivalent unambiguous grammar.
Often possible, but there exists grammars for which it cannot be done.
However, the parse tree will be different from the original desired one.

Alternatively, some parser generators support disambiguation rules:
Use the ambiguous grammar.
Add priority and associativity rules to instruct the parser to select the
desired parse tree.
Works for some ambiguities and some parser algorithms.

Alternatively, use general parser:
Constructs all parse trees.
Disambiguate after parsing.
But general parsers are slow (cubic in input length)

Eliminating ambiguity

8

Ambiguous

Unambiguous

Goal: transform an ambiguous grammar to an
equivalent unambiguous grammar.

Equivalent grammars

9

Two grammars, G1 and G2, are equivalent if they generate
the same language.

I.e., a sentence can be derived from one of the grammars,
iff it can be derived also from the other grammar:

L(G1) = L(G2)

Common kinds of ambiguities

• Binary operators with different priorities:
a + b * c == d, ...

• Associativity of binary operators of the same priority:
a + b – c + d, ...

• Dangling else:
if (a)
if (b) c = d;
else e = f;

10

Example ambiguity:
Priority (also called precedence)

11

Exp -> Exp "+" Exp
Exp -> Exp "*" Exp
Exp -> INT

Exp

Exp Exp

Exp Exp

"+"

INT
"*"

INT INT

Exp

Exp"*"

INT

Exp

Exp Exp"+"

INT INT

Two parse trees for INT "+" INT "*" INT

prio("*") > prio("+")
(according to convention)

prio("+") > prio("*")
(would be unexpected and confusing)

Example ambiguity:
Associativity

12

Exp -> Exp "+" Exp
Exp -> Exp "-" Exp
Exp -> Exp "**" Exp
Exp -> INT

For operators with the same priority,
how do several in a sequence associate?

Exp

Exp Exp

Exp Exp

"**"

INT
"**"

INT INT

Right-associative
(usual for the power operator)

Exp

Exp"+"

INT

Exp

Exp Exp"-"

INT INT

Left-associative
(usual for most operators)

Example ambiguity:
Non-associativity

13

Exp -> Exp "<" Exp
Exp -> INT

Exp

Exp"<"

INT

Exp

Exp Exp"<"

INT INT

For some operators, it does not make sense to have
several in a sequence at all. They are non-associative.

We would like to forbid both trees.
I.e., rule out the sentence from the language.

Exp

Exp Exp

Exp Exp

"<"

INT
"<"

INT INT

Disambiguating expression grammars

14

How can we change the grammar so that only the desired trees can be
derived?

Disambiguating expression grammars

15

How can we change the grammar so that only the desired trees can be
derived?

Idea: Replace some nonterminals with new ones that restrict what can
be generated.

Priority: Introduce a new nonterminal for each priority level:
Term, Factor, Primary, ...

Left associativity: Restrict the right operand so it only can contain
expressions of higher priority

Right associativity: Restrict the left operand ...

Non-associativity: Restrict both operands

Exercise

16

Ambiguous grammar:

Expr -> Expr "+" Expr
Expr -> Expr "*" Expr
Expr -> ID
Expr -> "(" Expr ")"

Equivalent unambiguous grammar:

Solution

17

Ambiguous grammar:

Expr -> Expr "+" Expr
Expr -> Expr "*" Expr
Expr -> ID
Expr -> "(" Expr ")"

Equivalent unambiguous grammar:

Expr -> Expr "+" Term
Expr -> Term
Term -> Term "*" Factor
Term -> Factor
Factor -> ID
Factor -> "(" Expr ")"

Here, we introduce a new nonterminal, Term, that is more restricted than Expr.
That is, from Term, we can not derive any new additions.

For the addition production, we use Term as the right operand, to make sure no new
additions will appear to the right. This gives left-associativity.

For the multiplication production, we use Term, and the even more restricted
nonterminal Factor to make sure no additions can appear as children (without using
parentheses). This gives multiplication higher priority than addition.

You will do this in Assignment 2!

Real-world example: The Java expression grammar

18

Expression -> LambdaExpression | AssignmentExpression
AssignmentExpression -> ConditionalExpression | Assignment
ConditionalExpression -> ...

AdditiveExpression ->
MultiplicativeExpression

| AdditiveExpression + MultiplicativeExpression
| AdditiveExpression – MultiplicativeExpression

MultiplicativeExpression ->
UnaryExpression

| MultiplicativeExpression * UnaryExpression
| ...

UnaryExpression -> ...
...
Primary -> PrimaryNoNewArray | ArrayCreationExpression
PrimaryNoNewArray -> Literal | this | (Expression) | FieldAccess ...

More than 15 priority levels.
See the Java Language Specification, Java SE 11, Chapter 19, Syntax
https://docs.oracle.com/javase/specs/jls/se11/html/jls-19.html#jls-19-15

The "dangling else" problem

19

S -> "if" "(" E ")" S ["else" S]
S -> ID "=" E ";"
E -> ID

if (a) if (b) c = d; else e = f;Construct a parse tree for:

The "dangling else" problem

20

S -> "if" "(" E ")" S ["else" S]
S -> ID "=" E ";"
E -> ID

S

S

if (a) if (b) c = d; else e = f;

S

S

if (a) if (b) c = d; else e = f;

Two possible parse trees!
The grammar is

ambiguous!

The desired tree

if (a)
if (b)
c = d;

else
e = f;

if (a)
if (b)
c = d;

else
e = f;

if (a) if (b) c = d; else e = f;Construct a parse tree for:

Solutions to the "dangling else" problem

21

Rewrite to equivalent unambiguous grammar
- possible, but results in more complex grammar (several similar rules)

Use the ambiguous grammar
- use "rule priority", the parser can select the correct rule.
- works for the dangling else problem, but not for ambiguous grammars in general
- not all parser generators support it well

Change the language?
- e.g., add a keyword "fi" that closes the "if"-statement
- restrict the "then" part to be a block: "{ ... }". (Recommended for A2)
- only an option if you are designing the language yourself.

The Java Language Specification rewrites the grammar to be unambiguous.
(See IfThenStatement and IfThenElseStatement.)

Rewriting "dangling else"

22

S -> "if" E S // Short if
S -> "if" E S "else" S // Long if
S -> "while" E "do" S
S -> ID "=" E ";"
S -> "{" S* "}"

Ambiguous grammar:

Rewriting "dangling else"

23

S -> "if" E S // Short if
S -> "if" E S "else" S // Long if
S -> "while" E "do" S
S -> ID "=" E ";"
S -> "{" S* "}"

Ambiguous grammar:

Solution idea: Limit S before "else" so that it cannot end with a short if.

S -> "if" E S
S -> "if" E LimS "else" S
S -> "while" E "do" S
S -> ID "=" E ";"
S -> "{" S* "}"
LimS -> "if" E LimS "else" LimS
LimS -> "while" E "do" LimS
LimS -> ID "=" E ";"
LimS -> "{" S* "}"

Unambiguous grammar:

Dangling else in JLS

24

Uses a rewritten grammar using the pattern on the previous slide.
Results in duplication in the grammar.
See https://docs.oracle.com/javase/specs/jls/se11/html/jls-19.html#jls-19-14

Statement -> IfThenStatement | IfThenElseStatement | WhileStatement | ...
IfThenStatement -> "if" "(" Expression ")" Statement
IfThenElseStatement -> "if" "(" Expression ")" StatementNoShortIf "else" Statement
WhileStatement -> "while" "(" Expression ")" Statement
...

StatementNoShortIf -> IfThenElseStatementNoShortIf | WhileStatementNoShortIf | ...
IfThenElseStatementNoShortIf ->

"if" "(" Expression ")" StatementNoShortIf "else" StatementNoShortIf
WhileStatementNoShortIf -> "while" "(" Expression ")" StatementNoShortIf
...

Other ambiguities are also rewritten using a similar pattern.
(See, e.g., ClassType vs UnannClassType)

Disambiguation by requiring block before "else"

25

S -> "if" E S
S -> "if" E S "else" S
S -> "while" E "do" S
S -> ID "=" E ";"
S -> "{" S* "}"

Ambiguous grammar:

Disambiguation by requiring block before "else"

26

S -> "if" E S
S -> "if" E S "else" S
S -> "while" E "do" S
S -> ID "=" E ";"
S -> "{" S* "}"

Ambiguous grammar:

S -> "if" E S
S -> "if" E "{" S* "}" "else" S
S -> "while" E "do" S
S -> ID "=" E ";"
S -> "{" S* "}"

Unambiguous grammar:

Recommendation: Use this approach in A2

Finding ambiguities in practice

27

You try to run a CFG through an LL or LR parser generator
- If it is accepted by the parser generator, the grammar is unambiguous
- If not, the grammar could be ambiguous, or unambiguous, but outside of the

parser generator grammar class. In any case, you need to analyze that particular
problem. This can be quite tricky, especially for large grammars. Perhaps you can
find an ambiguity, or some other known LL/LR difficulty.

28

Transforming to equivalent
grammar

EBNF, BNF, Canonical form

Recall: different notations for CFGs

29

A -> B d e C f
A -> g A

Canonical form
• sequence of terminals and nonterminals

C -> D a b | b E F | a C
BNF (Backus-Naur Form)
• alternative productions (... | ... | ...)

G -> H* i | (d E)+ F | [d C] EBNF (Extended Backus-Naur Form)
• repetition (* and +)
• optionals [...]
• parentheses (...)

Writing the grammar in different notations

30

Canonical form:

Expr -> Expr "+" Term
Expr -> Term
Term -> Term "*" Factor
Term -> Factor
Factor -> INT
Factor -> "(" Expr ")"

Equivalent BNF (Backus-Naur Form):

Equivalent EBNF (Extended BNF):

Writing the grammar in different notations

31

Canonical form:

Expr -> Expr "+" Term
Expr -> Term
Term -> Term "*" Factor
Term -> Factor
Factor -> INT
Factor -> "(" Expr ")"

Equivalent BNF (Backus-Naur Form):

Expr -> Expr "+" Term | Term
Term -> Term "*" Factor | Factor
Factor -> INT | "(" Expr ")"

Equivalent EBNF (Extended BNF):

Expr -> Term ("+" Term)*
Term -> Factor ("*" Factor)*
Factor -> INT | "(" Expr ")"

Use alternatives instead of several
productions per nonterminal.

Use repetition instead of recursion,
where possible.

Translating EBNF to Canonical form

32

Top level repetition
X -> g1 g2* g3

EBNF Equivalent canonical form

Top level alternative
X -> g1 | g2

Top level parentheses
X -> g1 (...) g2

Where gk is a sequence of terminals and nonterminals

Translating EBNF to Canonical form

33

Top level repetition
X -> g1 g2* g3

X -> g1 N g2
N -> ...

EBNF Equivalent canonical form

X -> g1 N g3
N -> e
N -> g2 N

Top level alternative
X -> g1 | g2

X -> g1
X -> g2

Top level parentheses
X -> g1 (...) g2

Exercise:
Translate from EBNF to Canonical form

34

EBNF:

Expr -> Term ("+" Term)*

Equivalent Canonical Form

Solution:
Translate from EBNF to Canonical form

35

EBNF:

Expr -> Term ("+" Term)*

Equivalent Canonical Form

Expr -> Term N
N -> e
N -> "+" Term N

Can we prove that these are equivalent?

36

EBNF:

Expr -> Term ("+" Term)*

Equivalent Canonical Form

Expr -> Term N
N -> e
N -> "+" Term N

Alternative Equivalent Canonical Form

Expr -> Expr "+" Term
Expr -> Term

trivial

non-trivial

Example proof

37

1. We start with this:
Expr -> Term ("+" Term)*

We would like this:
Expr -> Expr "+" Term
Expr -> Term

Example proof

38

1. We start with this:
Expr -> Term ("+" Term)*

2. We can move the repetition:
Expr -> (Term "+")* Term

4. Replace N Term by Expr in the
third production:
Expr -> N Term
N -> e
N -> Expr "+"

5. Eliminate N:
Expr -> Expr "+" Term
Expr -> Term

3. Eliminate the repetition:
Expr -> N Term
N -> e
N -> N Term "+"

Done!

We would like this:
Expr -> Expr "+" Term
Expr -> Term

Equivalence of grammars

39

Given two context-free grammars, G1 and G2.
Are they equivalent?

I.e., is L(G1) = L(G2)?

Equivalence of grammars

40

Given two context-free grammars, G1 and G2.
Are they equivalent?

I.e., is L(G1) = L(G2)?

Undecidable problem:
a general algorithm cannot be constructed.

We need to rely on our ingenuity to find out.
(In the general case.)

Space of context-free grammars

41

Ambiguous

Unambiguous

All context-free grammars

LR

LL

LL:
Builds tree top-down
Simple to understand

LR:
Builds tree bottom-up
More powerful

After eliminating typical ambiguities,
there may still be work to do to
transform to an LR or LL grammar.

42

Adapting grammars to LL parsing

Create equivalent LL grammar

43

Ambiguous

Unambiguous

LL

Create equivalent LL grammar

44

Ambiguous

Unambiguous

LL

Typically, need to eliminate Left Recursion and Common Prefixes.
(But this may not be enough.)
The parse trees will be different from the original desired ones.
Some work needed to build the desired ASTs anyway.
EBNF helps: relatively easy to build the desired AST.

Recall: LL(1) parsing

45

ID = ID.ID; ID = ID.ID (ID);

Assign

LL(1): decides to build the node after seeing
the first token of its subtree.
The tree is built top down.

Exp

?

Assign -> ID = Exp ;
Exp -> Name Params | Name | ...
Name -> ID (. ID)*

What node should be built?

Recall: LL(1) parsing

46

ID = ID.ID; ID = ID.ID (ID);

Assign

LL(1): decides to build the node after seeing
the first token of its subtree.
The tree is built top down.

Exp

?

Assign -> ID = Exp ;
Exp -> Name Params | Name | ...
Name -> ID (. ID)*

What node should be built?

Common prefix!
Cannot be handled by LL(1).
This grammar is not even LL(k).

47

Exp -> Name Params | Name

Eliminating the common prefix
Rewrite to an equivalent grammar without the common prefix

With common prefix - not LL(1)

48

Exp -> Name Params | Name

Eliminating the common prefix
Rewrite to an equivalent grammar without the common prefix

With common prefix - not LL(1) Without common prefix - LL(1)

Eliminating a common prefix this way is
called left factoring.

Exp -> Name OptParams
OptParams -> Params | e

49

A -> B s
A -> B t
B -> u v

Exercise
If two productions of the same nonterminal can derive a sentence

starting in the same way, they share a common prefix.

Which grammars have common prefix productions?
What is the common prefix? Is the grammar LL(1), LL(2), ...?

A -> s B
A -> s C
B -> t
C -> u

A -> s B
B -> s C
B -> t C
C -> u

G1:

G2:

G3:

50

A -> B s
A -> B t
B -> u v

Solution
If two productions of a nonterminal can derive a sentence starting

in the same way, they share a common prefix.

Which grammars have common prefix productions?
What is the common prefix? Is the grammar LL(1), LL(2), ...?

A -> s B
A -> s C
B -> t
C -> u

A -> s B
B -> s C
B -> t C
C -> u

A has two rules that can derive the prefix s
G1 is LL(2)

A has two rules that can derive the prefix u v
G2 is LL(3)

This is not a common prefix problem. The two
rules that start the same cannot be derived from
the same nonterminal.
G3 is LL(1)

G1:

G2:

G3:

51

The common prefix can be indirect

Which grammars have common prefix productions?
What is the common prefix?

Is the grammar LL(1), LL(2), ...?

A -> B
A -> C
A -> D
B -> t s
C -> t v
D -> x

A -> B s
A -> B t
B -> B u
B -> v

G1:

G2:

52

The common prefix can be indirect

Which grammars have common prefix productions?
What is the common prefix?

Is the grammar LL(1), LL(2), ...?

A -> B
A -> C
A -> D
B -> t s
C -> t v
D -> x

A -> B s
A -> B t
B -> B u
B -> v

A has two rules that can derive the prefix t
G1 is LL(2)

A has two rules that can derive the prefix v u*
So, the prefix can become arbitrarily long.
G2 is not LL(k), no matter what k we use.
We need to rewrite the grammar, or use another parsing method
than LL. (For example, LR has no problem with common prefixes)

G1:

G2:

53

Eliminating the common prefix
Rewrite to an equivalent grammar without the common prefix

A -> B
A -> C
B -> t s
B -> x D
B -> y
C -> t v
D -> B C

Indirect
common

prefix

54

Eliminating the common prefix
Rewrite to an equivalent grammar without the common prefix

A -> B
A -> C
B -> t s
B -> x D
B -> y
C -> t v
D -> B C

A -> t s
A -> x D
A -> y
B -> t s
B -> x D
B -> y
A -> t v
C -> t v
D -> B C

First, make the common prefix directly
visible:

Substitute all B right-hand sides into the
A -> B rule

We can't remove the B rules since B is
used in other places.

Similarly for the A -> C ruleIndirect
common

prefix
Direct

common
prefix

Then, eliminate the direct common prefix, as previously.

Left recursion

55

ID = ID + ID + ID ;

assign
assign -> ID "=" expr ";"
expr -> expr "+" term | term
term -> IDexpr

? What node should be built?

Left recursion

56

ID = ID + ID + ID ;

assign
assign -> ID "=" expr ";"
expr -> expr "+" term | term
term -> IDexpr

? What node should be built?

The grammar is left recursive.
The grammar is not LL(k).
An LL parser would go into endless recursion.

(LR parsers can handle left recursion.)

57

Dealing with left recursion in LL parsers
Method 1: Eliminate the left recursion

(A bit cumbersome)

E -> E "+" T
E -> T
T -> ID

Left-recursive grammar. Not
LL(k)

58

Dealing with left recursion in LL parsers
Method 1: Eliminate the left recursion

(A bit cumbersome)

E -> E "+" T
E -> T
T -> ID

Left-recursive grammar. Not
LL(k)

E -> T "+" E
E -> T
T -> ID

Rewrite to right-recursion! But
there is now a common
prefix! Still not LL(k).

E -> T E'
E' -> "+" E
E' -> e
T -> ID

Eliminate the common prefix.
The grammar is now LL(1)

With a little work, it is possible to write code that builds a left-recursive AST,
even if the parse is right-recursive.

59

Dealing with left recursion in LL parsers
Method 2: Rewrite to EBNF (Easy!)

E -> E "+" T
E -> T
T -> ID

Left-recursive grammar. Not
LL(k)

60

Dealing with left recursion in LL parsers
Method 2: Rewrite to EBNF (Easy!)

E -> E "+" T
E -> T
T -> ID

Left-recursive grammar. Not
LL(k)

E -> T ("+" T)*
T -> ID

Rewrite to EBNF!

A left-recursive AST can easily be built during the iteration.

61

Advice when using an LL-based parser generator

If the LL parser generator does not accept your grammar, the reason might be

• Ambiguity – usually eliminate it. In some cases, rule priority can be used.

• Left recursion – can you use EBNF instead? Otherwise, eliminate.

• Common prefix – is it limited? You can then use a local lookahead, for example
2. Otherwise, factor out the common prefix.

You might be able to solve the problem, but the grammar might become large and
less readable.

Different parsing algorithms

62

Ambiguous

Unambiguous

All context-free grammars

LR

LL

LL:
Left-to-right scan
Leftmost derivation
Builds tree top-down
Simple to understand
Common prefixes and left recursion
need to be eliminated

LR:
Left-to-right scan
Rightmost derivation
Builds tree bottom-up
More powerful
Can handle common prefixes and
left recursion

LL(k) vs LR(k)

LL(k) LR(k)

Parses input Left-to-right

Derivation Leftmost Rightmost

Lookahead k symbols

Build the tree top down bottom up

Select rule after seeing its first
k tokens

after seeing all its tokens, and an
additional k tokens

Left recursion Cannot handle Can handle!

Unlimited common
prefix

Cannot handle Can handle!

Can resolve some
ambiguities by special
disambiguation rules

Dangling else Dangling else, associativity,
priority

Error recovery Difficult Good algorithms exist

Implement by hand? Possible.
But better to use a

generator.

Too complicated.
Use a generator.

63

Summary questions

64

• What does it mean for a grammar to be ambiguous?
• What does it mean for two grammars to be equivalent?
• Exemplify some common kinds of ambiguities.
• Exemplify how expression grammars with can be disambiguated.
• What is the "dangling else"-problem, and how can it be solved?
• When should we use canonical form, and when BNF or EBNF?
• Translate an example EBNF grammar to canonical form.
• Can we write an algorithm to check if two grammars are equivalent?
• What is a ”common prefix”?
• Exemplify how a common prefix can be eliminated.
• What is ”left factoring”?
• What is ”left recursion”?
• Exemplify how left recursion can be eliminated in a grammar on canonical

form.
• Exemplify how left recursion can be eliminated using EBNF.
• Can LL(k) parsing algorithms handle common prefixes and left recursion?
• Can LR(k) parsing algorithms handle common prefixes and left recursion?

