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In this assignment you will learn how to implement code generation in a compiler. Specifically, you
will implement x86-64 (64-bit x86, also called AMD64 or EM64T) assembly generation for the SimpliC
language.

This assignment requires a Linux environment to work. It has been tested on Ubuntu 20.04.3 LTS. You
can log in remotely to the lab computers by connecting via SSH to login.student.lth.se:

ssh username@login.student.lth.se

All the tasks should then work via the remote terminal.

The most time-consuming part of this assignment will be learning the x86-64 assembly syntax sufficiently
well to be able to write and read it.

This is a large assignment, but it should not be too difficult if you follow these instructions methodically.
As usual, try to solve all parts of this assignment before going to the lab session.

I Major tasks are marked with a black triangle, like this.

1 x86-64 Assembly

This document contains a very quick overview of the x86 architecture. It should be sufficient for the
assignment at hand. However, if you are interested in learning more about x86 assembly, please look at
appendix E for links to some useful resources.

This document has a minimal instruction listing in section 1.6, and appendix F is an x86 assembly
cheat-sheet, for quick reference.

I Print out appendix F.

1.1 Assembly Style

You should be aware that there are two common styles of x86 assembler syntax: AT&T and Intel. We
will be using the AT&T style. However, some documentation on the web uses the Intel syntax. If you
use such documentation, like the Intel software developer manuals, please refer to appendix A to learn
the difference between the two styles. Keep in mind that the source/destination operands have opposite
positions in the two styles!

1.2 Minimal Example

Here is a minimal Linux assembly program:

.global _start

.text

_start:

movq $0, %rdi # exit code

movq $60, %rax # sys_exit

syscall
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This program just does the equivalent of System.exit(0), i.e., terminating the program successfully.
The _start label is where the program will start executing. It is declared .global to make it visible to
the linker. The .text line tells the assembler that what follows should go into the text section, which
is a read-only and executable part of the produced binary. Non-executable things, such as buffers and
constants, are usually placed in the .data, or .bss sections.

To assemble, link, and run the program, save it to a file named exit.s, then do the following commands
in a terminal prompt:

as exit.s -o exit.o

ld exit.o -o exit

./exit

The first command runs the assembler, GNU AS, to produce an object file named exit.o. The second
command runs the linker, ld, to link the object file with system libraries, and produce an executable
binary file named exit. The third command runs the executable binary program.

If the output file name is removed from the ld command, you will get an executable named a.out – the
historical name for the assembler output.

I Follow the instructions above to assemble and link the program, then run it. The program will not print
anything, but we can test that the exit code actually was zero, using this command: echo $? The echo
command prints the value of the argument, which in this case is the automatic variable $? which stores
the exit code of the previously executed command. Try changing the exit code in the assembler code
and then rebuild and verify that it now returns the new exit code. The exit code can be used for testing
before you have working input/output in your assembler programs.

It is possible to look at the machine code for an assembled program. Just type this in your terminal:
objdump -d exit. You should get something like this:

exit: file format elf64-x86-64

Disassembly of section .text:

0000000000400078 <_start>:

400078: 48 c7 c7 00 00 00 00 mov $0x0,%rdi

40007f: 48 c7 c0 3c 00 00 00 mov $0x3c,%rax

400086: 0f 05 syscall

The bytes on the left of the instructions, printed in hexadecimal, are the machine codes for the corre-
sponding instruction.

1.3 Registers

Temporary results are stored in the general-purpose registers RAX, RBX, RCX, RDX, RSI, RDI, and R8

through R15. These registers are 64 bits wide, but it is possible to access different parts of the registers
by specifying different variations of the register names. The table below shows some available registers
names and their meaning:

Intended Purpose 64-bit 32-bit 16-bit high 8-bit low 8-bit
Accumulator RAX EAX AX AH AL

Base index RBX EBX BX BH BL

Counter RCX ECX CX CH CL

Accumulator RDX EDX DX DH DL

Source index RSI ESI SI

Destination index RDI EDI DI

Stack pointer RSP RSP SP

Stack base pointer RBP EBP BP

Instruction pointer RIP EIP IP
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The 32-bit version of a register is just the low 32 bits, and the 16-bit version is the lowest 16 bits. The
high and low 8-bit registers refer to the high and low parts of their 16-bit counterparts.

The general-purpose registers R8, . . . , R15 were added in 64-bit x86 and are not available in 32-bit x86.

1.4 Operands

Each instruction takes 0-2 operands. The following types of operands exist:

• Register (short name = r)

• Immediate value (constant) (short name = im)

• Memory location (short name = m)

Each instruction allows only some of these operand types for each of its operands. To find out which
types of operands are accepted for each instruction you must refer to a good x86 instruction reference,
for example the Intel manual (see appendix E).

Here are some examples of operands:

Assembler Operand type What it means
$0 immediate decimal 0
$0x10 immediate hexadecimal 10 (=16 decimal)
lbl memory location value stored at address of label lbl
lbl+2 memory location value stored at two bytes after label lbl
$lbl immediate address of label lbl
$(lbl+4) immediate address of label lbl plus 4
%rdx register value stored in RDX

(%rax) memory location value at the address stored in RAX

8(%rbp) memory location value at eight bytes after the address stored in RBP

-3(%rax) memory location value at three bytes before the address stored in RAX

Instruction set references usually list which operand types are applicable for an instruction by listing the
short name of the operand plus the accepted bit size(s). For example r/m means either a register or
memory location.

1.5 Instruction Naming

Instruction names are derived from the base instruction mnemonic, and a suffix indicating the operand
sizes. For example, a MOV with quad word operands has the name movq in GNU AS.

GNU AS Instruction suffixes:

Suffix Operand size
b byte: 8 bits
s short: 16 bit integer or 32 bit float
w word: 16 bit
l long: 32 bit integer or 64 bit float
q quad word: 64 bit

Using incorrect operands with an instruction will result in the assembler complaining. For example the
line movq %ebx, %eax will produce the following error message: “Error: operand type mismatch for
movq” because it is not allowed to use 32-bit operands with a 64-bit MOV. Unfortunately the assembler
does not say which operand types it expected.
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1.6 Instruction Listing

Below is a listing of a set of useful instructions, for quick reference. This listing follows the AT&T
convention that the first operand is the source (src), and the second is the destination operand (dest).
The table is simplified, and may imply impossible operand combinations. You should refer to a more
complete source, such as the Intel manuals, to see all allowed operand combinations and get a more
precise description.

Instruction Operands Operation
< Mnemonic – Description > src dest
ADD – Add r/m/im r/m dest← dest + src
AND – Bitwise logical AND r/m/im r/m dest← AND(dest, src)
CALL – Call procedure r/m/im push RIP , then RIP ← dest
CMP – Compare two operands r/m/im r/m modify status flags similar to SUB

DEC – Decrement by 1 r/m dest← dest− 1
IDIV – Signed divide r/m signed divide RDX : RAX by src

RAX ← quotient, RDX ← remainder
IMUL – Signed multiply (2 op) r/m/im r dest← dest ∗ src
IMUL – Signed multiply (1 op) r/m RDX : RAX ← RAX ∗ src
INC – Increment by 1 r/m dest← dest + 1
Jcc – Jump if condition is met m/im conditionally RIP ← dest
JMP – Unconditional jump m/im RIP ← dest
LEA – Load effective address m r dest← addressOf(src)
MOV – Move r/m/im r/m dest← src
NEG – Two’s Complement negation r/m dest← −dest
NOT – One’s Complement negation r/m dest← NOT (dest)
OR – Bitwise logical OR r/m/im r/m dest← OR(dest, src)
POP – Pop value off the stack r/m dest← POP (stack)
PUSH – Push value on the stack r/m/im PUSH(stack, src)
RET – Return from procedure restore RIP by popping the stack
SUB – Subtract r/m/im r/m dest← dest− src
SYSCALL – System Call invoke OS kernel

Remember that to use 64-bit operands with an instruction you must use the ’q’ suffix, e.g. negq %rax.

There are many variations of the conditional jump instruction, Jcc. Here are a few:

Instruction Description
JE Jump if equal
JNE Jump if not equal
JG Jump if greater than
JGE Jump if greater than or equal
JL Jump if less than
JLE Jump if less than or equal

The CMP instruction is responsible for updating the status flags used by the conditional jump instructions.
For example, the JGE instruction jumps to the given target if the dest operand of the previous CMP was
greater than the src operand.

1.7 Linux System Calls

The simplest way to interact with the OS, and thereby use input/output, is to use the SYSCALL instruction.
Different Linux system functions are selected based on the value of the RAX register. Arguments to the
system call are placed in the RDI, RSI, and RDX registers. Here is a short list of some system calls and
corresponding register assignments:
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RAX Function RDI RSI RDX

0 sys_read file descriptor byte buffer address buffer size
1 sys_write file descriptor byte buffer address buffer size

60 sys_exit error code (range 0-255)

A complete list of available x86-64 Linux system calls is available at http://blog.rchapman.org/post/
36801038863/linux-system-call-table-for-x86-64. Note that 32-bit system calls work differently;
this list is specifically for 64-bit assembly.

1.8 Simple I/O

This program demonstrates using the sys_write Linux system call to write to stdout:

.global _start

.data

message: .ascii "Hello edan65!\n"

.text

_start:

movq $1, %rdi # stdout file descriptor

movq $message, %rsi # message to print

movq $14, %rdx # message length

movq $1, %rax # sys_write

syscall

movq $0, %rdi # exit code = 0

movq $60, %rax # sys_exit

syscall

Note that the string to print is placed in the .data section. See 1.2 for an explanation of sections.

The following program just reads one line from stdin, using sys_read, then echoes it to stdout:

.global _start

.data

buf: .skip 1024

.text

_start:

movq $0, %rdi # stdin file descriptor

movq $buf, %rsi # buffer

movq $1024, %rdx # buffer length

movq $0, %rax # sys_read

syscall

movq $1, %rdi # stdout file descriptor

movq $buf, %rsi # message to print

movq %rax, %rdx # message length

movq $1, %rax # sys_write

syscall

movq $0, %rdi

movq $60, %rax

syscall

The sys_read function returns the number of bytes that were read in the RAX register, so we use that as
the message length in the call to sys_write.
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1.9 Procedures

It is useful to break out common parts of your code into procedures that can be re-used for multiple
operations. This is the purpose of the CALL and RET instructions.

The RIP register is the instruction pointer register, sometimes also called program counter. It holds the
address of the next instruction to execute, thereby determining the control flow of the program. The CPU
automatically increases the instruction pointer to point at the next instruction right after the current one
in the machine code (normally matches the assembly code layout). However, the CALL instruction pushes
the current instruction pointer on the stack, then sets RIP to the value of the operand. The matching
RET instruction pops the return address from the stack and overwrites the instruction pointer.

call fail # call procedure "fail"

movq %rax, %rdi

movq $60, %rax

syscall # sys_exit

fail:

movq $255, %rax # store exit code in %rax

ret # return

The above example shows a very simple procedure. It sets an error code in RAX, then it returns. The
error code is then sent to the sys_exit function.

In order to be truly useful procedures should be able to take arguments and store local variables. This
requires understanding stack frames, described in the next section.

1.10 Stack Management

The stack is composed of stack frames (activation records). The RBP (base pointer) register holds the
address of a fixed position in the current stack frame, while RSP (stack pointer) holds the position of the
current top of the stack. The stack “grows” toward lower addresses, i.e., upwards in the figure.

A stack frame typically looks like this:

Local variables

Old base pointer

Return address

Parameters

Stack

stack pointer

base pointer
+

–

To call a procedure the arguments must first be pushed in reverse order. For example if a procedure
myproc takes two arguments we might do this:

pushq param2

pushq param1

call myproc

Recall that the CALL instruction pushes the return address. This gives us the current stack:

Return address

Parameter 1

Parameter 2

...

Stack

stack pointer

base pointer +

–

Now it is time to push the old base pointer (also called dynamic link), and update the new one:
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myproc:

pushq %rbp

movq %rsp, %rbp

This gives us the current stack:

Old base pointer

Return address

Parameter 1

Parameter 2

...

Stack

stack pointer

base pointer +

–

Now we can go ahead and push local variables on the stack, and use RBP to address those local variables.
For example, the first local variable would have the address -8(%rbp), because it is right above RBP on
the stack which means it has a lower address and its size is 8 bytes, hence the -8.

To compute the address to some parameter we use RBP again, but now the parameter is lower on the
stack, so it has a higher address. The first parameter is at 16(%rbp) (can you figure out why +16?)

When the procedure is finished it is time to restore the caller’s RBP:

movq %rbp, %rsp

popq %rbp

Local variables

Old base pointer

Return address

Parameter 1

Parameter 2

...

Stack

stack pointer

base pointer +

–

All that remains now is to jump back to the return address and to pop parameters off the stack. We
can use the RET instruction, which pops the return address off the top of the stack then jumps to that
address. The parameters are still left on the stack after returning to the caller though, so the caller must
ensure that they are removed:

ret

# ...

# At caller:

addq $16, %rsp # 2 parameters, 8 bytes each

Now the stack has been cleaned up properly – RBP and RSP are in their original state. If a return value
is required then it should be stored in the RAX register, not on the stack.

I How would you compute the location of the return address in the stack?
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1.11 Calling Procedures

To demonstrate the calling conventions presented in the previous section, here is a procedure that takes
two parameters, first a pointer to a string to print, second the number of characters in the string:

# Procedure to print a message

print_string:

pushq %rbp

movq %rsp, %rbp

movq $1, %rdi

movq 16(%rbp), %rsi

movq 24(%rbp), %rdx

movq $1, %rax

syscall

popq %rbp

ret

I Draw a diagram showing the stack after each instruction.

I Modify the first program in section 1.8 to use the above procedure instead of using a SYSCALL in _start.

Note: In appendix B there are two procedures for the read and print functions in the SimpliC language.
They will be useful for your generated code.

1.12 Loops and Conditionals

Coding loops and conditional expressions in assembly requires the use of conditional jumps (see section
1.6). A while loop can be generated like this:

### while ( %rax < %rdx )

loop_start:

cmpq %rdx, %rax

jge loop_end # leave loop if %rax >= %rdx

# loop body

jmp loop_start # jump to start, test condition again

loop_end:

# done

Please note that the actual jump instruction has an inverted jump condition. This is because instead of
testing whether the loop should iterate one more time, i.e. “continue if true”, we test if we want to leave
the loop, “leave if false”.

There is another example of an inverted loop condition in the assembly code for the read procedure in
appendix B.

An if-statement can be generated like this:

### if ( %rax >= 10 )

cmpq $10, %rax

jl else_lbl # go to else_lbl if %rax < 10

then_lbl:

# then body

jmp fi

else_lbl:

# else body

fi:

# done
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The then_lbl label was just added for clarity, it is not necessary.

In the assembler code for an if-statement the conditional jump will jump to the else-code of the statement.
If the (inverted) condition is false, the execution steps to the next line, so that is where the then-code
is placed. The then-code needs to be followed by a jump to the end of the if-statement so that the
else-code is not executed after it.

Note that in the generated assembly all labels need to be unique!

I How would break- and continue-statements look in generated assembly?

Boolean expressions in the SimpliC language are limited to a single relational expression each, such
as a == b, c >= d, or x < y. In this case only a single conditional jump is needed for each boolean
expression. If you are curious as to how more complex boolean expressions can be represented in assembly
you should look at appendix D.

1.13 Debugging with DDD

A debugger can be used to examine the inner workings of a compiled program. For Linux, the debugger
of choice is often GDB. However, GDB lacks a graphical interface. Instead you should try to use the
DDD debugger, which runs as a graphical interface over GDB. If you are on a lab computer, you can
issue the command ddd program in a terminal window to start the debugger. However, in order for DDD
to be really useful you need to assemble with the --gstabs option so that DDD can display source code
for your program. In other words, run the following commands to start debugging:

as --gstabs program.s -o program.o

ld program.o -o program

ddd program&

If done correctly you will see the following window (after a first-time welcome message):

If the source code is missing (as indicated by a mostly blank window), it means that you forgot to use
the --gstabs option with as.

You can set a breakpoint by right-clicking on any whitespace on a source line (in the top part of the main
window) and selecting the appropriate item in the pop-up context menu. After starting the program
by clicking Run in the toolbox window, the program will run up to the breakpoint and halt. After the
debugger hits the breakpoint you can single-step in the program by clicking the Stepi button in the
toolbox window.

You can open the very useful register display via the Status→Registers menu item. The register display
shows the current value of all registers:
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Sometimes the program requires input, which is entered using the console at the bottom of the main
DDD window. The Console can also be used to interact with the underlying GDB debugger.

If you wish to examine the stack, the simplest way is to use the GDB console and enter the command
x/6gx $rsp which prints six quad-words starting at the address of RSP in hexadecimal format (use x/6gd
instead to print it in decimal). This is demonstrated in the screen shot below:

In the above image you can see that the previous base pointer was zero, the return address is 0x4000bb,
and the first parameter is 0x86.

Note on running DDD remotely: If you are running lab 6 remotely, using ssh to the school computers,
you can also run DDD. To do this you need to have a local X display server installed on your computer,
e.g., XQuartz for Mac, or VcXsrv for Windows. You also need to pass the -X flag to ssh. When you then
start DDD, the graphics will be displayed on your computer, even if DDD runs on the school computer.

2 CalcASM Demo

To demonstrate assembly code generation there is a demo project called CalcASM provided for this
assignment.

The version of the Calc language used for this demo has been simplified somewhat in order to make the
code generation much easier to read. The simplifications are:

• Only integer arithmetic is used.

• The ask user expression does not allow a default value.

I You should have a look at the src/jastadd/CodeGen.jrag file in the CalcASM project and try to
understand what it does. Some points of interest are discussed in this section.

First, identify the different code parts generated by the Program node: the different segments (.global,
.data, and .text), the start label, the actual code of the Calc program, the system call to exit, and
the helper functions for I/O. The helper functions are also listed in appendix B.

The CalcASM code generator demonstrates the following code-generation techniques:

10



• Allocating space for local variables

• Storing temporary values on the stack

• Basic arithmetic

Special things to note in the code generation:

• The code generation for multiplication and division is not symmetrical. Remember to generate code
specially for integer division in SimpliC.

• Every result of every expression is placed in RAX, then pushed on the stack, copied to another
register, or used in a computation.

• To keep the code generation simple, the CalcASM compiler only uses the RAX and RBX registers to
store intermediate values for all expressions. All other temporary results are stored on the stack.

• To allocate space for local variables (bindings), there are attributes to calculate the total number
of locals, numLocals(), as well as the index of each local in the stack frame, localIndex():

syn int ASTNode.numLocals() = lastNode().localIndex() - localIndex();

syn int ASTNode.localIndex() = prevNode().localIndex();

eq IdDecl.localIndex() = prevNode().localIndex() + 1;

Both these attributes are calculated using the prevNode() and lastNode() attributes which point
to specific nodes relative to the current one in a pre-order traversal of the AST. The prevNode()

attribute points to the previous node in a pre-order traversal of the whole tree, while the lastNode()
points to the last node in a pre-order traversal of the subtree at the current node:

inh ASTNode ASTNode.prevNode();

eq ASTNode.getChild(int i).prevNode() = prevNode(i);

syn ASTNode ASTNode.lastNode() = prevNode(getNumChild());

syn ASTNode ASTNode.prevNode(int i) = i>0 ? getChild(i-1).lastNode() : this;

The dashed arrows in the figure below show a pre-order traversal in a tree. The prevNode() and
lastNode() attributes are displayed for a node in the tree:

Program

Let

List

Binding Binding

Expr

pre
vNo

de(
)

lastNode()

I Draw an arrow for both prevNode() and lastNode() at the List node in the above tree.

In addition to these attributes we only need to add a start value for localIndex() so that the
iteration over previous nodes will terminate:

syn int Program.localIndex() = 0;
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I Build the CalcASM compiler and compile the mul1.in program in the testfiles/asm directory.

You should be able to understand what the generated assembly code does (if not, please refer again to
the assembly introducion sections of this document).

I Compare the mul1.in program with the generated assembly code. Try to find which parts of the generated
assembly code correspond to parts of the Calc program.

I Look at the src/jastadd/CodeGen.jrag file to see how the assembly code is generated.

I Run the assembler and linker on the generated assembly code, and run the resulting binary executable
program (see section 1.2). Does it compute the correct result?

2.1 Test Framework

There is a simple test framework in CalcASM to test the code generation. The framework compiles and
runs test programs and checks if they compute the expected result. For each .in file in the test directory
testfiles/asm the test framework first runs the Calc compiler to generate the corresponding assembly
code files (*.s), then the assembler, then the linker and finally the resulting binary is executed (*.elf).
If the execution output matches the corresponding .expected file then the test passed. The test fails if
something went wrong along the way or if the output did not match the expected output.

3 SimpliC Code Generation

You will now implement code generation for the SimpliC language, extending your compiler from assign-
ment 5. As usual, work in small increments, and add test cases as you cover larger and larger parts of
the language.

I First, write down what the generated code should look like for the following small SimpliC programs:

Program 1

int main() {

return 1;

}

Program 2

int f() {

return 2;

}

int main() {

f();

return 1;

}

I Look through the remaining tasks and write down small test programs for them, as well as what the
generated code should look like.

I Task 1 Implement code generation for function declarations. Your compiler should be able to compile
program 1. To get started, look at the code generation for CalcASM. You should start with something
like this:
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public void Program.genCode(PrintStream out) {

out.println(".global _start");

// etc.

out.println("_start:");

// call main function

for (FunctionDecl decl: getFunctionDeclList()) {

decl.genCode(out);

}

// call sys_exit

// helper procedures (print/read)

}

public void FunctionDecl.genCode(PrintStream out) {

// your code here

}

Recall that each expression should generate code that puts the resulting value in RAX, but so far the only
expression you need to implement is integer literals.

I Task 2 Set up the testing framework. When running the compiled program, it should produce empty
output. Check that it runs. Then set up a test framework in the same manner as for CalcASM, and add
program 1 to your test suite. See section 3.2 for advice on testing. In the subsequent tasks, add your
test programs to the automated test suite.

I Task 3 Implement code generation for function calls with no arguments. Your compiler should be able
to compile program 2.

I Task 4 Implement passing of arguments in function calls.

When simple no-argument function calls have been implemented you can continue by adding parameter
passing. This means that the parameter expressions must be evaluated, and their values pushed (in
reverse order) on the stack before the function call. The expression evaluation code can be a placeholder
for now that just puts some constant value in RAX.

I Task 5 Check that you now can compile a program that prints a constant value. You can now start
producing more interesting test cases that print out a specific value. Make sure your test programs are
added to the test suite.

I Task 6 Support constant-value expressions, e.g., 3+(4/2)*3. Recall that the result of each expression
should be stored in RAX. When evaluating binary expressions you can store the left operand value on the
stack while the right operand is computed.

I Task 7 Implement code generation for conditional jumps.

Boolean expressions, such as 3 > 1, will only be used as conditions for if- and while-statements. For
each boolean expression, a conditional jump will be generated. The target of the conditional jump is
dependent on the control flow structure the boolean expression is used in. To generate these conditional
jumps you can add a new code generation method called genConditionalJump in the binary expression
AST class. This method should have a parameter which gives the target label to jump to if the expression
is true.

I Task 8 Implement code generation for if- and while-statements.

When boolean expression evaluation is working you can move on to the control flow statements if and
while. Generating code for these requires some unique labels to be generated. See the code generation
lecture for ideas on how to do this.

I Task 9 Implement addressing of formal parameters in functions. Skip variables for now, and only think
about the parameters.

Look back at section 1.10 to figure out what the address of the first parameter should be. How can you
compute the address of any parameter using only the parameter index? How can you get the index of a
parameter?
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Since both local variables and parameters are represented by IdDecl nodes in the AST you will need
some way of telling these two apart. You probably already have an attribute for this in your code from
previous labs.

I Task 10 Allocate space for local variables.

The number of local variables in a function decides how much stack space to allocate for local variables
at the start of the function. For example, if two local variables are used then RSP is subtracted by 16 at
the start of the function.

It is sufficient to count the total number of local variables used in a function. This will allocate
enough room for all variables even if all of them are not used simultaneously. This is what the code
for numLocals() in CalcASM does.

I Task 11 Implement local variable addressing.

Local variable indexes are used to calculate stack addresses of local variables. Look at how local variable
indexes are generated in CalcASM and implement the same for SimpliC.

You can reuse the following attributes from CalcASM to compute local variable indexes:

syn int ASTNode.localIndex() = prevNode().localIndex();

eq Program.localIndex() = 0;

eq IdDecl.localIndex() = prevNode().localIndex() + 1;

inh ASTNode ASTNode.prevNode();

eq ASTNode.getChild(int i).prevNode() = prevNode(i);

syn ASTNode ASTNode.lastNode() = prevNode(getNumChild());

syn ASTNode ASTNode.prevNode(int i) = i>0 ? getChild(i-1).lastNode() : this;

However, the above attributes enumerate variables globally. There is an additional attribute equation
you should add to make the variable index numbering start over inside each function declaration.

I Task 12 Check that your compiler works for a simple program that reads some input, performs some
computation, and writes some output. Do not add this program to the automated test suite, as the
testing framework does not handle programs with input.

I Task 13

With all these tasks done, your code generation should work for any input program! Write new test
cases that cover many different features of the code generation. One of these programs should be the gcd
program from assignment 2. Undoubtedly there will still be bugs left, try to fix as many as you can.

3.1 Premature Optimization

A common mistake is to try and remove redundant copies of sub-expressions in the generated code.
However, it is very important to above all make sure you generate correct code. Only when you are
absolutely certain that the generated code is correct should you start thinking about optimizations.

For example, it may seem redundant to copy every single value into RAX, and in fact it is redundant in
most cases. However, this is the simplest way to generate the code and it is a really good idea to aim for
simple rather than efficient code, initially. In this course, we do not study optimizations, and to do them
in a good way, you should take the course EDAN75 (Optimizing Compilers).
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3.2 Testing

To reuse the testing framework in CalcASM, simply copy the TestCodeGeneration.java file into your
project. Note that the test framework expects the tested programs to exit with an exit code of zero. If
it does not exit with zero you will get a test error.

To test single files without the test framework you can use the command line. It is then handy to combine
a number of commands into a single one, as below:

java -jar compiler.jar myfile > x.s && as --gstabs x.s -o x.o && ld x.o && ./a.out

The && runs the next command in the list if the previous command succeeded.

4 Common Mistakes

• Not pushing function arguments in the correct order (from last to first).

• Not popping function arguments after a function call has returned.

• Not using small test programs. Small test programs are very useful because you are less likely to
run into multiple code generation bugs in the same test. If you find that a large test is failing, try
to break it up into smaller tests.

• Not clearing RDX before IDIV. This causes overflows and incorrect results. May result in “Floating
point exception” error messages.

• Note that floating point exceptions can be caused by integer overflows and integer division by zero.
Yes, it is confusing.

5 Optional Challenges

Here are some suggestions for optional projects that you can try to implement in your compiler:

• Try linking with and calling your SimpliC functions from a C program. See appendix C.1 for more
information.

• Instead of counting all variables in a method you may count the maximum number of “visible” local
variables anywhere in the function. This way, variables that are not visible at the same time may
reuse the same space on the stack. However, if you do this then the local variable indexing must
also be altered.

6 What to show and discuss with your supervisor

When you are ready with the assignment, these are typical things your supervisor may ask you to do:

• Show that you can compile and run some interesting SimpliC program.

• Show your code generation aspect.

• What new test cases did you write?

• Use ASTronaut to show the generated code of an example method.

15



A AT&T vs Intel Syntax

There are two main styles of x86 assembler syntax:

AT&T The default style used in GNU AS and GDB, and thus the most common style used in Linux
assembler programming.

Intel This style is used by the NASM assembler.

The Intel style is generally considered easier to read. However, we will be using the AT&T style because
it is the default of many useful tools on Linux such as as, gdb, and objdump.

Although we will use the AT&T style it is useful to know the differences between AT&T and Intel style
because both are common. Here are the most important differences:

• AT&T has the % prefix for all register names, and $ for all constant operands. The Intel style does
not use prefixes for operands.

• Source and destination operands for most instructions have swapped positions. In AT&T in-
structions have the form <instruction> <source> <destination>, while Intel uses the form
<instruction> <destination> <source>.

• In AT&T assembler, the operand size is coded using suffixes in the instruction mnemonic. In Intel
assembler, special keywords are instead used on the operands when the assembler cannot figure out
the operand size.
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B Procedures for Input/Output

This section contains assembly code for the read and print procedures in the SimpliC language.

The provided procedures handle negative numbers, and follow the calling convention described in 1.10.
See also appendix C.

# Procedure to print number to stdout.

# C signature: void print(long int)

print:

pushq %rbp

movq %rsp, %rbp

### Convert integer to string (itoa).

movq 16(%rbp), %rax

leaq buf(%rip), %rsi # RSI = write pointer (starts at end of buffer)

addq $1023, %rsi

movb $0x0A, (%rsi) # insert newline

movq $1, %rcx # RCX = string length

cmpq $0, %rax

jge itoa_loop

negq %rax # negate to make RAX positive

itoa_loop: # do.. while (at least one iteration)

movq $10, %rdi

movq $0, %rdx

idivq %rdi # divide RDX:RAX by 10

addb $0x30, %dl # remainder + ’0’

decq %rsi # move string pointer

movb %dl, (%rsi)

incq %rcx # increment string length

cmpq $0, %rax

jg itoa_loop # produce more digits

itoa_done:

movq 16(%rbp), %rax

cmpq $0, %rax

jge print_end

decq %rsi

incq %rcx

movb $0x2D, (%rsi)

print_end:

movq $1, %rdi

movq %rcx, %rdx

movq $1, %rax

syscall

popq %rbp

ret
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# Procedure to read number from stdin.

# C signature: long long int read(void)

read:

pushq %rbp

movq %rsp, %rbp

### R9 = sign

movq $1, %r9 # sign <- 1

### R10 = sum

movq $0, %r10 # sum <- 0

skip_ws: # skip any leading whitespace

movq $0, %rdi

leaq buf(%rip), %rsi

movq $1, %rdx

movq $0, %rax

syscall # get one char: sys_read(0, buf, 1)

cmpq $0, %rax

jle atoi_done # nchar <= 0

movb (%rsi), %cl # c <- current char

cmp $32, %cl

je skip_ws # c == space

cmp $13, %cl

je skip_ws # c == CR

cmp $10, %cl

je skip_ws # c == NL

cmp $9, %cl

je skip_ws # c == tab

cmp $45, %cl # check if negative

jne atoi_loop

movq $-1, %r9 # sign <- -1

movq $0, %rdi

leaq buf(%rip), %rsi

movq $1, %rdx

movq $0, %rax

syscall # get one char: sys_read(0, buf, 1)

atoi_loop:

cmpq $0, %rax # while (nchar > 0)

jle atoi_done # leave loop if nchar <= 0

movzbq (%rsi), %rcx # move byte, zero extend to quad-word

cmpq $0x30, %rcx # test if < ’0’

jl atoi_done # character is not numeric

cmpq $0x39, %rcx # test if > ’9’

jg atoi_done # character is not numeric

imulq $10, %r10 # multiply sum by 10

subq $0x30, %rcx # value of character

addq %rcx, %r10 # add to sum

movq $0, %rdi

leaq buf(%rip), %rsi

movq $1, %rdx

movq $0, %rax

syscall # get one char: sys_read(0, buf, 1)

jmp atoi_loop # loop back

atoi_done:

imulq %r9, %r10 # sum *= sign

movq %r10, %rax # put result value in RAX

popq %rbp

ret
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Note that both procedures need a buffer named buf with room for at least 1024 bytes! The buffer should
be allocated as in the second example of section 1.8.

You may download the above code from here: https://bitbucket.org/edan65/examples/src/master/
asm/io.s

C C Interoperability

Section 1.10 informally describes a calling convention, or Application Binary Interface (ABI), where
parameters are placed on the stack, and the caller pops parameters after a call (caller clean-up).

When two procedures are compiled with different calling conventions they become incompatible. So, in
order to be able to call C functions from our assembler code, or vice versa, we would have to follow the
correct calling convention, which on 64-bit Linux is the System V AMD64 ABI. 1

Here is a summary of the System V AMD64 ABI:

• The first six arguments are passed in RDI, RSI, RDX, RCX, R8, and R9.

• Additional arguments are placed on the stack in reverse order.

• The result is stored in RAX.

• Registers RBP, RBX, and R12-R15 are saved/restored by the callee. All other registers should be
stored by the caller if needed.

Note that the calling convention described in section 1.10 is similar to the System V convention, except
that all parameters are passed on the stack. We also have not talked about callee-saved registers, which
are an important detail when linking with external code. Your procedures must restore all callee-saved
registers or you can end up with serious errors when your code is called from an external C program.

Note that the read and print procedures in appendix B mostly follow the 64-bit Linux calling convention,
except that the print procedure takes its parameter on the stack.

C.1 Compiling with C

Here is a small demo of compiling assembler code together with a C program. The source of the C
program, saved in a file named main.c:

#include<stdio.h>

long int sum(long int a, long int b);

int main(int argc, char** argv) {

long int the_sum = sum(30, 5);

printf("the sum = %d\n", (int)the_sum);

return 0;

}

The function prototype for sum is important because this tells GCC how it should call our assembly
code. Here is the assembly code for the sum function, in the file sum.s:

1https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
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.global sum

.text

sum:

pushq %rbp

movq %rsp, %rbp

movq %rdi, %rax

addq %rsi, %rax

popq %rbp

ret

Optional task. Copy the above code to the correct files, then compile it with GCC using the follow-
ing command: gcc -g sum.s main.c -o main The compiled binary main can then be run using the
command ./main Does it produce the expected output?

You can disassemble the executable to see how the main function was compiled by GCC using the following
command: objdump -d main

D General Boolean Expressions

Generating code for general boolean expressions, such as a>b && c==d, gets a little more complicated than
when only a single relational expression is used. The most intuitive way is to use a series of conditional
jumps, for example:

### if (%rax == %rbx && %r9 > %r10)

cmpq %rbx, %rax

jne else_lbl

cmpq %r10, %r9

jle else_lbl

then_lbl:

# then body

else_lbl:

With an and-expression no additional label is required. However, if there is an or-expression (a>b || c<d),
then an extra label is used to jump to the then-code in case the first expression was true. This short-
circuits the evaluation of the second expression:

### if (%rax == %rbx || %r9 > %r10)

cmpq %rbx, %rax

je then_lbl

cmpq %r10, %r9

jle else_lbl

then_lbl:

# then body

else_lbl:

Note that the test for the first condition became un-inverted (jump to then-label if true).

An alternative way to generate conditional expressions with AND- and OR-operators that is a bit simpler
to generate, but does not have the benefit of short-circuiting redundant computations, is to evaluate each
boolean expression to a value of zero or one, then conditionally jump depending on if the expression value
was zero or one. This method utilizes the conditional flags set by the CMP instruction. The conditional
flags can be copied to a one-byte register using the SETcc instructions, where cc is the condition code to
copy.
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Let’s look at an example:

### if (%r8 == %r9 || %r10 > %r11)

cmpq %r9, %r8

movq $0, %rax

sete %al

pushq %rax

cmpq %r11, %r10

movq $0, %rax

setg %al

popq %rbx

andq %rbx, %rax

cmpq $0, %rax

je else_lbl

then_lbl:

# then body

else_lbl:

First we compare R8 and R9, then the SETE instruction is used to set the value of the conditional flag
for equality, either 0 or 1, in the AL register. Note that RAX is zeroed first because SETE only sets one
byte of RAX. The result is pushed on the stack, then the next relational expression is evaluated in a
similar manner. However, now the SETG instruction is used. The results of both relational expressions
are combined using AND to compute the value of the whole boolean expression which is then used to
conditionally jump as normal.

The following variants of SETcc exist:

Instruction Description
SETE Set equality flag
SETNE Set inequality flag
SETG Set greater than flag
SETGE Set greater than or equal flag
SETL Set less than flag
SETLE Set less than or equal flag

These set the destination operand (which must be a byte register), to 0 or 1 depending on the result of
the previous compare. The SETcc instructions work similarly to the Jcc instructions.
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E Additional x86 Assembly Resources

We have given a short overview of x86 assembly in this document and intentionally skipped over some
important parts, for example floating point arithmetic. For further information on x86 assembly please
look at the following useful online resources:

• Wikibooks: x86 Assembly: https://en.wikibooks.org/wiki/X86_Assembly

• Introduction to the AT&T assembly syntax: https://en.wikibooks.org/wiki/X86_Assembly/

GNU_assembly_syntax

• The GNU Assembler (GNU AS) Manual: http://tigcc.ticalc.org/doc/gnuasm.html

Here are some online x86 instruction set listings:

• Wikipedia: https://en.wikipedia.org/wiki/X86_instruction_listings

• Intel Software Developer Manuals for x86-64: https://software.intel.com/en-us/articles/

intel-sdm (look for “instruction set reference”)

• x86asm.net: http://ref.x86asm.net/coder64-abc.html (very compact information)

• Learning to Read x86 Assembly Language http://patshaughnessy.net/2016/11/26/learning-to-read-x86-assembly-language

Additional links:

• System V ABI: https://wiki.osdev.org/System_V_ABI

• Linux x86-64 Syscalls: http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_
64/
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F Assembler Cheat Sheet

General-purpose registers: RAX, RBX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15. Instruction
pointer register: RIP.

Operands: r = register, m = memory location, im = immediate.

Operand Type What it means
$0 im decimal 0
$0x10 im hexadecimal 10 (=16 decimal)
lbl m value stored at address of label lbl
lbl+2 m value stored at two bytes after label lbl
$lbl im address of label lbl
$(lbl+4) im address of label lbl plus 4
%rdx r value stored in RDX

(%rax) m value at the address stored in RAX

8(%rbp) m value at eight bytes after the address stored in RBP

-3(%rax) m value at three bytes before the address stored in RAX

Instruction Operands Operation
< Mnemonic – Description > src dest
ADD – Add r/m/im r/m dest← dest + src
AND – Bitwise logical AND r/m/im r/m dest← AND(dest, src)
CALL – Call procedure r/m/im push RIP , then RIP ← dest
CMP – Compare two operands r/m/im r/m modify status flags similar to SUB

DEC – Decrement by 1 r/m dest← dest− 1
IDIV – Signed divide r/m signed divide RDX : RAX by src

RAX ← quotient, RDX ← remainder
IMUL – Signed multiply (2 op) r/m/im r dest← dest ∗ src
IMUL – Signed multiply (1 op) r/m RDX : RAX ← RAX ∗ src
INC – Increment by 1 r/m dest← dest + 1
Jcc – Jump if condition is met m/im conditionally RIP ← dest
JMP – Unconditional jump m/im RIP ← dest
LEA – Load effective address m r dest← addressOf(src)
MOV – Move r/m/im r/m dest← src
NEG – Two’s Complement negation r/m dest← −dest
NOT – One’s Complement negation r/m dest← NOT (dest)
OR – Bitwise logical OR r/m/im r/m dest← OR(dest, src)
POP – Pop value off the stack r/m dest← POP (stack)
PUSH – Push value on the stack r/m/im PUSH(stack, src)
RET – Return from procedure restore RIP by popping the stack
SUB – Subtract r/m/im r/m dest← dest− src
SYSCALL – System Call invoke OS kernel

Operand size suffix: b = 1 byte, w = 2 bytes, l = 4 bytes, q = 8 bytes.

Use instruction mnemonic + suffix to get the instruction name. For example: negq, movq, movl.

Conditional jumps:

Instruction Description
JE Jump if equal
JNE Jump if not equal
JG Jump if greater than
JGE Jump if greater than or equal
JL Jump if less than
JLE Jump if less than or equal

cmp op1, op2

jge lbl # Jump to lbl if op2 >= op1.
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