Lund University Compilers
Computer Science EDANG65

Jesper Oquist, Niklas Fors, Gérel Hedin 2022-09-04

Programming Assignment 3
Visitors, Aspects, and Attribute Grammars

This assignment will give you experience in using two techniques for imperative computations in a com-
piler: static Aspect Oriented Programming (static AOP) and the Visitor Pattern. This assignment will
also introduce Attribute grammars.

To understand visitors and static AOP, there is a new demonstration example, CalcComp. You will then
extend your SimpliC implementation from assignment 2 with a visitor-based computation of Maximal
Statement Nesting, and static AOP-based computations of pretty printing and name analysis. As an
introduction to attribute grammars, you will work on a demonstration example called MinTree.

Try to solve all parts of this assignment before going to the lab session. If you get stuck, use the forum
to ask for help. If this does not help, you will have to ask at the lab session. Make notes about answers
to questions in the tasks, and about things you would like to discuss at the lab session.

Major tasks are marked with a black triangle, like this.

1 The CalcComp Demo

The CalcComp demo project shows how to implement a simple code metric using visitors, and simple
error checking and pretty-printing using static AOP.

Download the CalcComp example and run the tests, so you see it works.

1.1 Visitors

Study the Visitor interface and accept methods in src/jastadd/Visitor. jragE] Note that the Visitor
interface has one visit method for each concrete AST class, and that each concrete AST class has an
accept method. What does each accept method do?

Study the class TraversingVisitor in src/java/lang. This class implements the Visitor interface.
What does each visit method do?

Study the class CheckInteractiveVisitor. java in src/java/lang which implements an example Visi-
tor. The visitor checks if there are any interactive statements (Ask-statements) in a Calc program. Note
that there is a static method called result that takes an AST parameter, and a visit method for the Ask
class. Try to answer the following questions:

e The main method in Compiler. java calls the result method with the program AST as the argu-
ment. What happens when the result method is called? How is double dispatch used?

e Suppose you wanted to count the number of Ask statements instead. How would you change the
visitor?

IThe code in Visitor.jrag is boilerplate code that would typically be generated automatically by some tool. However, for
this assignment, we think it is a good idea to write it manually, so you get a better understanding of how visitors work.

1.2 Pretty printing using aspects

With JastAdd, it is possible to use static aspects instead of visitors. Aspects allow methods to be added
directly to existing AST classes, and there is no need for the double dispatch that visitors use. We will
now look at how pretty printing (also known as unparsing) is implemented in CalcComp using aspects.

Pretty printing is the programmatic printing of an AST back to its corresponding textual form. This can
be useful in several situations, for example when printing error messages, or when debugging a compiler.

P Study the aspect PrettyPrint. jrag in src/jastadd. Some things to note:
e There is a method prettyPrint (PrintStream) that is intended to be called by a client, e.g., the
main program.

e System.out has the type PrintStream, so the client can pass System.out as the argument to
prettyPrint.

e There are methods prettyPrint (PrintStream, String) that are used internally to do the pretty
printing. The String argument is used for adding a suitable number of blanks as indentation.

1.3 Name analysis and error checking

The name analysis in CalcComp checks that variables are declared before they are used. For example,
the following code is not valid because the name b is used before it has been declared.

let

a=>b

b =3.0
in

a
end

Multiple declarations of the same name in the same let statement are not allowed. However, “shadowing”
is supported, so that a declaration in a let statement shadows outer declarations of the same name. For
example, the following is valid because the second declaration of b is inside another let statement:

let

in

end

The name analysis in CalcComp is implemented using a stack of symbol tables. The tree is traversed,
and each time a new scope is entered, such as a let statement, a new SymbolTable instance is pushed
on top of the stack.

P Study the NameAnalysis.jrag aspect in src/jastadd. Things to note, and questions to answer:

e The aspect contains a class SymbolTable with methods declare, lookup, and push.

e The aspect contains a method Program. checkNames (PrintStream) that checks a program for name
analysis errors and prints any error messages on the PrintStream.

2

To implement checkNames (PrintStream), each AST class has a method checkNames (PrintStream,
SymbolTable). These methods print any error messages to the PrintStream, add any declarations
to the current SymbolTable, push nested SymbolTables as needed, and traverse recursively into
any subtrees. Make sure you understand how these methods work.

The symbol table is simpler than a traditional symbol table in that it only keeps track of names
and not the binding (declaration) of a name. This would be needed to support, for example, type
checking. How would you modify the SymbolTable class to support name binding?

Suppose you have a main program with a Program AST. What would a call look like that performs
name analysis and prints the errors to standard error? (Hint: google standard streams java if you
don’t know what standard error is.)

How does the push operation work in SymbolTable? Why is there no pop operation?

SimpliC

You will now extend the compiler for SimpliC that you implemented in Assignment 2 with some analyses
using visitors and aspects.

Make sure that your code from Assignment 2 is in a consistent state that builds and tests correctly.

2.1

Maximal Statement Nesting for SimpliC

Maximal Statement Nesting (MSN) is a simple metric which computes the maximum nesting depth of
statements in a program. If there are no nested statements then MSN=1, if there is one statement nested
inside another then MSN=2 etc. The MSN of the example below is 3:

int main() {
// depth = 1
int i = 100;
while (i > 0) {

}

// depth = 2

if (i ==5) {
// depth = 3
print(i);

+

i

=13i-1;

if (i == 0) {

}

// depth = 2
print(i);

// depth = 1
return O;

Implement the visitor framework for SimpliC, including a TraversingVisitor classE|

Think about how you could implement MSN analysis for SimpliC. Think first how you would solve it if
you added methods to the AST classes. Then think about how you would solve it using a visitor. Try to
answer the following questions.

e What are possible strategies for implementing the MSN analysis? Should you use state variables
inside the visitor or the data parameter? What are the pros and cons of these approaches?
e Suppose the visitor framework had type parameters for the return value and the data parameter.

What would the advantage be?

Implement a visitor to compute the MSN of a SimpliC program, including automated tests with examples
where MSN is 1, 2, and 3, respectively.

2.2 Pretty printing for SimpliC

Implement pretty printing of SimpliC programs using static aspects. Your code should be structured
similarly to the pretty printing in the CalcComp demo (see section , and include automated tests.
For syntactically correct programs, the test input should be the same as the expected output. However, in
case you do not store parenthesis expressions in your AST, you may ignore pretty printing the parentheses,
for simplicityﬂ

2.3 Name analysis and error checking for SimpliC

You should implement name analysis and error checking of two basic types of errors:

e Check and report errors for multiply declared functions and variables

e Check and report errors for uses of undeclared functions and variables

The declaration order is important. Functions and variables must be declared before they are used. For
example:

int a() {
return b(); // error: b is not yet declared

3

int b() {
return 1;

}
Declare-before-use for variables:

int main() {

int a;
a =2+ b; // error: b is not yet declared
int b = 3;
return a;
}

2Note that if you use a tool that supports visitors, it would typically generate the framework code for you. You will
write this code yourself in order to better understand how it works, even if it is a bit repetitive.

3Pretty-printing a minimal number of parentheses would be a bit too much work for this assignment. If you want to do
it, it is better to wait until you have learnt how to use attributes (Assignment 4).

The variable names are allowed to be shadowed, if declared inside another statement:

int main() {

int a = 3;

if (a '=0) {
int a = 4; // okay: not in same block
return a;

}

int a = 5; // error: redeclaration

return a;

}
Function parameters should of course also be considered in the name analysis:

int main(int a) {
return a; // okay: a refers to the parameter

3

The name errors are checked by implementing a simple form of name analysis. You will not need to bind
variable uses to their declarations so you can use a very simple symbol table as in the CalcComp demo.

When implementing the checks for variable and function names, it is useful to have IdDecl and IdUse
AST nodes for both variable and function declarations/uses. The declaration checking is then symmetric
for variables and functions. IdDecl and IdUse are used in the CalcComp demo, although in the CalcComp
case there are no functions.

Think through how you are going to implement name analysis and error checking. Try to answer the
following questions.

e How can you handle built-in functions like print and read?
e In what circumstances should you be able to re-declare, or shadow, a variable name?
e In your opinion, should it be possible to shadow function parameters? Why, or why not?

e The examples provided above are good test cases. What other important test cases can you think
of? Consider multiple parameters, if-then-else, etc.

Implement name analysis and the basic error checking described above, including good automated tests.

A note on line and column numbers

The scanner can set the line and column number of each scanned symbol, by using the metavariables
yyline and yycolumn. See scanner.jflex in one of the example projects. During parsing, the line and
column information is carried over to the AST nodes, and can be accessed for each AST node by the
calls getLine(getStart ()) and getColumn(getStart()). See src/jastadd/NameAnalysis. jrag in the
CalcComp demo for an example. However, Beaver only sets these values for the returned production of a
rule. So if one of your rules creates more than one node, the line and column numbers will work correctly
only for the returned node. Therefore, if you get the value 0 for rows and columns, try refactoring your
Beaver rules so that each new node is returned by a separate beaver rule.

A note on System.exit (1)

Usually, a program will exit with a non-zero error code in case of errors. This can be done by calling
System.exit (1) (to exit with error code 1). The self grader uses the exit code to determine if the
compilation ends with an error or not. To use the self grader, you will need to adapt the main program
to exit with non-zero when there are semantic errors like name binding errors.

3 MinTree - Introduction to Attribute Grammars

You will now get an introduction to Attribute Grammars, using an example called MinTree. Next week’s
assignment will go deeper into attribute grammars, and apply them for semantic analysis of SimpliC.

MinTree is a small language that describes trees of numbers, and your task is to compute the minimum
number in the tree, using attribute grammars. The MinTree project is provided on the course web page.
The project contains an abstract grammar, pretty printing, a main class, and test cases.

The abstract grammar of MinTree is defined as follows.

Program ::= Node;

abstract Node;

Pair : Node ::= Left:Node Right:Node;
Leaf : Node ::= <Number:int>;

The class Program represents the root node of the AST. The abstract class Node with two concrete
subclasses, Pair and Leaf, models the recursive tree structure. Using this grammar, we can create an
AST explicitly, without any parser, as follows.

new Program(new Pair(new Leaf(1), new Pair(new Leaf(2), new Leaf(3))))

This expression can be visualized as follows.

Program

Download the MinTree project. Build the project and run the test cases (./gradlew test). All test
cases should fail at this point. Also, build and run the main lang.Compiler program that prints out the
tree above in a textual format. To build it as a Jar file, use ./gradlew jar. To run the Jar file, type
java -jar compiler.jar.

3.1 The localMin attribute

Attributes are computed properties of AST nodes that are defined by equations. How can we define the
minimum value of the AST using attributes? Recall that Node is the superclass of Leaf and Pair. Let’s
introduce an attribute localMin for Node that is the minimum value of the Node’s subtree. I.e., we would
like the following attributed tree:

Program

[Fair localMin=1

[localMin=1[Leaf 1] (Pair] localMin=2]

l localMin=2 [Leaf 2] [Leaf 3] localMin=3 ‘

We can see that the value of localMin for Pair nodes is the minimum value of its children’s localMin.

We can declare localMin as an attribute on the abstract class Node, so both subclasses Pair and Leaf
get the attribute:

syn int Node.localMin();

This is a synthesized attribute with the type int on class Node and with the name localMin. The
attribute has been declared as a synthesized attribute, which means the equation must be located in the
same Node object (not in an ancestor). We can provide one equation in class Pair and another in class
Leaf to take care of the two kinds of Nodes. The equations can use tokens and attributes of the node
and its children.

An equation for the class Leaf can be specified as follows.
eq Leaf.localMin() = ...;

Here, the right-hand side of the equation is an expression. This kind of equation is called expression-style
equation. For more complicated equations, the equation can be specified as a block. The above equation
is equivalent to the following block-style equation.

eq Leaf.localMin() {

return ...;

}

Define the attribute localMin for the classes Leaf and Pair by adding two equations in the aspect file
MinValue. jrag. Use the expression-style equation for the class Leaf and block-style equation for the
class Pair. Verify that the test case for localMin passes.

Note! If you are using VS Code as your editor, there is a syntax highlighting extension for JastAdd that
you can install. See

3.2 The globalMin attribute

We have now synthesized the information upwards in the tree. We will now let all nodes know what
number is the mininum number. We can do this by using an inherited attribute, that is, an attribute
whose equation is defined by an ancestor node in the AST. This is illustrated in the following figure.

[Program] eq getNode().globalMin() = ...

[pair] globalMin=1 ‘

’ globalMin=1 [Leaf 1) [pair] globalMin=1 ‘

’ globalMin=1 [Leaf 2) (Leaf 3] globalMin=1 ‘

Here, the class Node, and thus Pair and Leaf, has an inherited attribute globalMin, but the equation is
defined by the Program node, that is, an ancestor in the AST. An inherited attribute can be declared as
follows.

inh int Node.globalMin();
And the equation is specified as follows.
eq Program.getNode() .globalMin() = ...;

Note that we specify the child (getNode) for which the equation is valid, according to the names in the
abstract grammar. The equation above states that the value of the attribute globalMin is ... for the
child Node. The code ... executes in the context of Program, and can access attributes, tokens, and
children in Program.

The equation actually applies not only to getNode, but to all nodes in the whole subtree of getNode that
happen to have a globalMin attribute. This is a mechanism called broadcasting, that is very useful in
order to avoid having to define a lot of so called copy attributes that simply copy a value from a parent
to a child.

If we want the equation to be valid not just for the subtree of a particular child, but for all children, we
can specify getChild instead of getNode, which in this case does not matter since Program has only one
child.

The MinValue. jrag aspect contains an equation for globalMin that simply defines it to be 0. Change
the equation so that the correct value is computed. Verify that the corresponding test case passes.

There is an attribute isMinValue on Leaf that is supposed to tell if the node is the minimum num-
ber. Change the equation for the attribute to compute the correct value. Verify that the test case for
isMinValue passes.

The numbers in the tree do not need to be unique. This means that several Leaf nodes can have the
same number. We will now compute how many Leaf nodes that have the minimum number. Define
the attribute nbr0fMinValues for both the class Program (computing the global value) and for Node
(computing the local value for that subtree). Verify that all test cases pass. Also, add a new test case
where the value of nbrO0fMinValues is larger than 1.

3.3 Side-effect free equations

For attribute grammars to work, the equations must be free from externally observable side effects, i.e.,
effects that other equations can see. This means that computing the equation several times should yield
the same result. For example, the equation code must never change global variables that other equations
might use (or call methods that do so). Note, however, that it is fine for an equation block to introduce
local variables and assign to them, because these variables are not accessible from outside the block—the
side effects on those variables are not externally observable.

Can I add print statements to the equation code? Yes, you can do that, but only for debugging, e.g., to
see if an attribute is evaluated or not. You cannot use it for production code. The reason is that you do
not control the order in which equations are executed—this is decided by an attribute evaluation engine.
If you want to print things as part of the compilation, say, to prettyprint an AST, you will instead use
normal methods, and which may access attributes in order to easily print computed information, such as
type-checking errors.

3.4 Using attributes from methods

P There is an aspect PrettyPrint.jadd with methods for prettyprinting a MinTree, and that is called
from the lang.Compiler class. Change the prettyprinter to print *** MINIMUM #**x for each leaf node
that has the minimum value. Check that it works by running the main lang.Compiler program again.

4 Development tooling for JastAdd

You will now try out two very useful development tools for JastAdd: DrAST and CODEPROBER. Through
these tools you can inspect the attribute values of your compiler. We also mention a syntax highlighter
that is useful if you are using the VS code editor.

4.1 DrAST—an interactive attribute inspector

DrAST is a tool that visualizes the AST and supports interactive inspection of attributes. The tool was
developed as a master’s thesis project in 2016. The MinTree compiler has been prepared for use with
DrAST.

» Try out DrAST on MinTree by using the following steps:

e Run DrAST by typing the following command:
curl -L https://bitbucket.org/jastadd/drast/raw/master/run.sh | bash
This command will download the latest version of DrAST to a directory in your home directory
($HOME/ .drast), build it, and start it. (DrAST uses JavaFX which is a native library. Because
JavaFX is no longer part of the Java standard library, the tool is now platform dependent and you
need to build it on your own platform.)

e If you have trouble building or starting DrAST, see the section on Troubleshooting below. If you
still have problems, skip trying DrAST and go on to the next exercise on CODEPROBER).

e When DrAST starts, a dialog box will appear where you fill in the absolute path to the compiler jar:
.../compiler.jar, and the absolute name of the file to compile as the first compiler argument.
The MinTree compiler doesn’t read in any files, but fill in the name of an existing text file anyway,
e.g., .../testfiles/dummy.in, as DrAST currently assumes the compiler always reads in a file.
Click OpenE]

e You can now click on nodes and see their attribute values to the left.
e The view should be something like the figure below.
e Attribute values are computed on demand, so right—clickﬂ to see the value of an attribute.

e You may also configure the system to compute all attributes by the menu command Attribute
settings -> Compute all attributes.

e DrAST will leave a configuration file, DrAST.cfg in the $HOME/ .drast directory.

4 Absolute path names are currently needed since DrAST is run from gradle in the .drast directory. Because of the
JavaFX dependency, it is nontrivial to build/run it in another way.
5or two-finger tap if you are using a Mac touch pad

e If you would like to, you can also try out DrAST on your own SimpliC compiler. Make sure that
the main program includes a static variable called DrAST_root_node, and which is set to the AST
root. See MinTree/src/java/lang/Compiler.java for an example. When you run DrAST, you
need to enter one of the test programs as the first compiler argument in the initial dialog. Even if
the project has no attributes defined, it can still be useful to use DrAST to look at the AST itself.

For more information on DrAST, see https://bitbucket.org/jastadd/drast.

File View Performance Attribute settings
Move: hold middle mouse ...

» Filter

Attributes v Source File

1Dummy input file

Name Value

¥ Attributes
¥ Inherited
globalMi... 0
¥ Synthesised
isMinVal... false
localMin() 0O
nbrOfMi... 0

Y Tokens

getNumber() 3

Node Count: 6/6 | Compiler: compiler.jar

All Messages Warnings Errors

Pair
Leaf 1
Pair

Leaf 2
Leaf 3

Compiler finished after : 11 ms

Select an attribute to view its informat... Filter update: done after 38 ms

Joel Lindholm | Johan Thorsberg 2015-2016

Troubleshooting for DrAST

DrAST has been tested for Oracle Java version 8 and OpenJDK Java version 11. To find out what
Java version you are using, type java -version in the terminal. For Oracle Java 8 it should say
something like: java version "1.8.0_261". For OpenJDK Java 11 it should say something like:
openjdk version "11.0.8". If you are running another Java version, and cannot get DrAST to work,
you may try installing https://sdkman.io|in order to easily switch between different Java versions.

If you are running on Windows, you also need to run an X server, e.g., VcXsrv, seelhttps://sourceforge.
net/projects/vcxsrv/.

If you are running the Wayland display server on Linux, you need to run in the XWayland compatibility
mode. In that case, use this command instead to start DrAST:

curl -L https://bitbucket.org/jastadd/drast/raw/master/run.sh | env -u WAYLAND_DISPLAY bash

10

https://bitbucket.org/jastadd/drast
https://sdkman.io
https://sourceforge.net/projects/vcxsrv/
https://sourceforge.net/projects/vcxsrv/

4.2 CodeProber—probing AST node properties from a code editor

CODEPROBER is a web-based code editor that allows you to interactively explore attributes and other
properties of the code. With CODEPROBER, you point in the code to identify an AST node, and you
can then create a so called probe that shows the value of a property. If you edit the code, the probe will
update, always showing the current value.

CODEPROBER requires that the compiler includes a parser, so it is not very useful on the MinTree
example. However, it will be very convenient for using on your SimpliC compiler.

CODEPROBER was developed in 2022 in a research project at the department, and suggestions for en-
hancements are welcome.

» Try out CODEPROBER on your SimpliC compiler using the following steps:

e Download code-prober. jar from the following repository:
https://git.cs.1lth.se/an6308ri/code-prober

The tool works by running a local web server and opening a web page on localhost. To start the
server, type the following command:

java -jar code-prober.jar compiler.jar
where compiler. jar is the compiler you built for SimpliC.

To start the code editor, open a browser on the page http://localhost:8000.

Write some SimpliC code in the code editor, e.g., copy one of your test programs.

Create a probe:

— Right-click to select Create Probe.

— Select one of the nodes in the menu (all AST nodes covering the position you clicked are shown
in the menu). Note that when you hover over the nodes in the menu, the corresponding code
lights up in the editor.

— A menu with methods of the selected node appears. This will be a long list because of all the
built-in methods of JastAdd AST nodes. Select the dumpTree () method.

Note that the probe shows the value of dumpTree() for the selected node, as in the example below.
Now edit the program and watch how the value of the probed method changes.

Input
t main(int a) [
int b = 42;
return a#b%7;

AddExpr.dumpTree

AddExpr
IdUse Name="a"
MulExpr
Iduse Name="b"
Num Value="7"

For CODEPROBER to work for a given compiler, it relies on the compiler having the static variable
DrAST root_node defined in the main program, and pointing to the AST root, i.e., it uses the same
information as DrAST. CODEPROBER furthermore relies on the AST nodes having suitable line and
column data.

The methods that can be probed are those without arguments or with arguments of primitive or ASTNode
types. Later in the course, when you use attributes to define static semantics and code generation, you
will be able to probe them in this way.

For more information on CODEPROBER, see https://git.cs.1lth.se/an6308ri/code-prober.

11

https://git.cs.lth.se/an6308ri/code-prober
https://git.cs.lth.se/an6308ri/code-prober

4.3 JastAdd syntax highlighting in VS Code

If you are using VS Code as your editor, you can install syntax highlighting for JastAdd files (.ast, .jrag,
and .jadd) as follows:

1. Open VS Code and click the extensions tab

2. Search for “JastAdd”

3. Click “Install”

Welcome

EXTEN MARKETPLACE

T

JastAdd

JastAdd Syntax Highlighting 2
* Syntax highlighting for JastAdd files (.jrag, .jadd and .ast)

Kevlanche Install

Alternatively, you can install it via your browser here: https://marketplace.visualstudio.com/
items?itemName=Kevlanche. jastadd-syntax-highlighting

5 What to show and discuss with your supervisor

When you are ready with the assignment, these are typical things your supervisor may ask you to do:

e Show your MSN visitor for SimpliC, and the automated tests you used for testing it.
e Show your pretty-print aspect for SimpliC, and your automated tests for it.
e Show your name analysis aspect for SimpliC, and your automated tests for it.

e Show your attribute grammar computing localMin, globalMin, and nbr0fMinValues. Show that
the tests pass. Show that you can run the MinTree compiler so that it prints the text
*x*kMINIMUM ***
in the right way.

e Did you get DrAST to run, and did it help you understand attributes?

e What was your experience with CODEPROBER?

12

https://marketplace.visualstudio.com/items?itemName=Kevlanche.jastadd-syntax-highlighting
https://marketplace.visualstudio.com/items?itemName=Kevlanche.jastadd-syntax-highlighting

	The CalcComp Demo
	Visitors
	Pretty printing using aspects
	Name analysis and error checking

	SimpliC
	Maximal Statement Nesting for SimpliC
	Pretty printing for SimpliC
	Name analysis and error checking for SimpliC

	MinTree - Introduction to Attribute Grammars
	The localMin attribute
	The globalMin attribute
	Side-effect free equations
	Using attributes from methods

	Development tooling for JastAdd
	DrAST—an interactive attribute inspector
	CodeProber—probing AST node properties from a code editor
	JastAdd syntax highlighting in VS Code

	What to show and discuss with your supervisor

