
EDAN65: Compilers, Lecture 14

Review of important concepts
Görel Hedin

Revised: 2021-10-12

Course overview

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

A1

A1, A2

A3, A4

A5

A6

Regular expressions and scanning

3

2 3
f

i
IF

1

4

a-z

ID

a-z

NFA

3,4
f

i
IF

1

4

a-hj-z
ID

a-z

DFA

a-z
a-eg-z

2,4
ID

Given some informal description, formulate a regular expression or automaton.
Translate between regular expressions, NFAs, DFAs.
Know how to combine automata representing tokens.
Know how to handle rule priority and longest match.

Context-free grammars

4

Given some informal description, formulate a language as a context-free grammar.

The elements of a context-free grammar G=(N, T, P, S):
nonterminal symbols, terminal symbols, productions, start symbol

Understand what the language defined by a grammar is.
Understand the difference between regular expressions and context-free grammars.

Exp -> Exp "+" Exp
Exp -> Exp "*" Exp
Exp -> INT

Exp
=> Exp "+" Exp
=> INT "+" Exp
...

Derivations. How to prove that a sentence belongs to a language.
Parse trees. How a parse tree corresponds to a derivation.

LL Parsing

5

... if ID then ID = ID ; ID ...

IfStmt

Exp Assign

CompoundStmt

Be able to construct a recursive-descent parser for a given LL(1) grammar.

Understand what left recursion and common prefix mean.
Understand why grammars with these properties are not LL(1).
Be able to transform such a grammar to an equivalent LL(1) grammar.

Understand the main idea of how LL parsing works

Understand the concepts of Nullable, FIRST, and FOLLOW.
Be able to compute them for a given
nonterminal in a grammar.
Be able to construct an LL(1) table.

Ambiguities in context-free grammars

6

Exp

Exp Exp

Exp Exp

"+"

INT
"*"

INT INT

Exp

Exp"*"

INT

Exp

Exp Exp"+"

INT INT

Understand what it means for a grammar to be ambiguous.
Understand what it means for two grammars to be equivalent.

Be able to prove that a grammar is ambiguous for common ambiguities (expressions
and dangling else).

Be able to transform an ambiguous grammar to an equivalent unambiguous grammar,
for common ambiguities.

Notations for context-free grammars

7

Be able to formulate grammars on canonical form, as BNF, and EBNF
Be able to translate between these forms.

A -> B d e C f
A -> g A

C -> D a b | b E F | a C

G -> H* i | (d E)+ F | [d C]

Canonical form

BNF

EBNF

Abstract grammars

8

abstract Stmt;
IfStmt : Stmt ::= Expr Stmt;
Assignment : Stmt ::= IdUse Expr;
IdUse : Expr ::= <ID:String>;

Abstract grammar

Understand the difference between an abstract grammar and a context-free grammar.

Understand how an abstract grammar corresponds to an object-oriented model.
Be able to design an abstract grammar for a simple language, corresponding to a good
object-oriented model.

Be able to design a high-level (possibly ambiguous) concrete grammar that is very close
to an abstract grammar.

LR parsing

9

... if ID then ID = ID ; ID ...

Exp Assign

Exp
Understand the main idea of how LR parsing works
with shift, reduce, and accept actions.

Be able to show which actions an LR parser takes
when parsing a specific example.

Understand why LR is more powerful than LL.

Understand what an LR item is.
Understand what an LR state is.

Understand what an LR conflict is.
For a given LR conflict, be able to construct a program
that would expose the conflict (for a simple case).

I will not ask you to construct an LR DFA or an LR parsing table on the exam.

E -> E • "+" E ?
E -> E "*" E • "+"

Static aspects with intertype declarations

aspect Evaluator {
abstract int Expr.value();
int Add.value() { return getLeft().value() + getRight().value(); }
int Sub.value() { return getLeft().value() – getRight().value(); }
int IntExpr.value() { return String.parseInt(getINT()); }

}

10

Understand how static aspect-oriented programming with
inter-type declarations works.

Be able to program problems using methods declared in aspects.

Visitors

Add

IntExpIntExp

PrintVisitor

visitAdd(this)

accept(this)

visitIntExp(this)

accept(new PrintVisitor())

11

Understand how the visitor pattern works.

Be able to program problems using visitors.

Reference attribute grammars

12

inh int B.i();
eq A.getB().i() = 2;

A

C
i = 2

B

Understand how reference attribute grammars work, with different kinds of attributes:
synthesized, inherited, parameterized, NTAs, circular, and collection attributes.

Given an attribute grammar and an example AST, be able to compute attribute values.

Be able to program problems using reference attribute grammars.

You don't have to memorize details in the JastAdd syntax –
copies of the JastAdd reference manual will be available at the exam.

Runtime systems and code generation

13

Understand how an activation stack works, with frame
pointer, stack pointer, and dynamic link.

Understand simple calling conventions, like passing
arguments on the stack and the return value in a register.

Be able to write down x86 assembly code for procedure
calls, procedure activation and returns, and simple
computations like loops, assignments, expression
evaluation, etc.

Be able to draw the contents of the stack for a given
execution point in a program.

rbp

rsp

retaddr
a
b
...

dynlink

t1
d
c

dynlink

You don't have to memorize x86 instructions –
the cheat sheet will be available at the exam.

retaddr
this
args

temps
vars

dynlink

Runtime systems for object-oriented languages

14

temps
vars

dynlink

activation class descriptor

super
method1
method2

...
static var1
static var2

...

m:
pushq ...
movq ...
subq ...
...

code of method

class
field1
field2

...

object

Understand the role of the static link ("this" pointer).
Understand how prefixing works for single inheritance of fields.
Understand how vtables work for single inheritance dynamic dispatch.

Have an overall understanding of how dynamic adaptive compilation works with
inline call caches and PICs.
Have an overall understanding of how different garbage collection algorithms work,
with mark-sweep, copying, generational, and reference-counting.

You don't have to memorize how to handle multiple inheritance.

Preparing for the exam

15

Read slides, book, papers, lab descriptions.
Do the quizzes and the exercises.
E14 contains exercises for many parts of the course.
Study old exams.

Ask at the forum if you have questions!

Don't forget to sign up for the exam by Monday 2021-Oct-18.
Students who have not signed up will not be admitted to the exam.

You need to finish the assignments/labs before the exam.

Catch-up lab sessions:
• Tuesday Oct 12, 15:00-17:00
• Tuesday Oct 19, 13:00-15:00

The exam: On-campus: Kårhuset:Gasque, Friday Oct 29, 8:00-13:00

Continued studies and work
• EDAN70/90: Project in Computer Science, lp2
• EDAP05: Programming language concepts, lp2, fall 2021
• EDAP15: Program analysis, lp2, fall 2022
• EDAN75: Optimizing Compilers, lp3, spring 2023

• Compiler related master thesis projects in industry
(ARKAD Nov 17-18)
– Modelon AB, Lund
– ABB, Malmö
– Arm, Lund
– Axis, Lund
– ...

• Master thesis projects at the CS department

• Student internships/stipends at Tech companies, e.g., Google summer of code,
Google internships (https://www.google.com/about/careers/students/)

• ...

16

