
EDAN65: Compilers, Lecture 10

Runtime systems
Görel Hedin

Revised: 2021-09-28

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

Runtime systems

3

Organization of data
• Global/static data
• Activation frames (method instances)
• Objects (class instances)

Method calls
• Call and return
• Parameter transmission

Access to variables
• Local variables
• Non-local variables

Object-oriented constructs
• Inheritance
• Overriding
• Dynamic dispatch
• Garbage collection

The machine

4

Registers

CPU

Random Access
Memory

cache
memoryALU

The machine

5

Registers

CPU

Random Access
Memory

cache
memoryALU

Registers:
Some dedicated: program counter, stack pointer, ...
Some general purpose (for computations)
Typically 32 registers.

32-bit machine: Each register is 32 bits wide. Can address max 232 bytes of RAM = 4GB.
64-bit machine: Each register is 64 bits wide. Could theoretically address max 264 bytes of RAM
(in practice, use perhaps 48 bits to address max 256 TB).

RAM:
Typically divided into
memory segments

Typically byte-addressed.
Like a very large array.

Example memory segments

6

stack

heap

code (read only)

objects

activation
frames

global data

Stack of activation frames

7

The data for each
method call is stored in
an activation frame

Synonyms:
activation record
activation
stack frame
frame

Swedish:
aktiveringspost

frame

frame

frame

code

stack
grows

Stack of activation frames

8

The data for each
method call is stored in
an activation frame

Synonyms:
activation record
activation
stack frame
frame

Swedish:
aktiveringspost

frame

frame

frame

code

stack
grows

Some dedicated registers:

FP – Frame Pointer. The first word of the current frame

SP – Stack Pointer. The top of the stack.

PC – Program counter. The currently executing instruction.

Example frame layout

9

FP

SP

retaddr
arg1
arg2

temp1
local3
local2
local1

dynlink

temp3
temp2
temp1
local2
local1

dynlink

calling frame

current frame

Example frame layout

10

The calling method pushes arguments on the stack.
The return value is placed in a register.

temps: Temporary variables

args: Arguments to current frame.

retaddr: Saved PC - where to jump at return

dynlink: Dynamic link – points to frame of calling method

locals: Local variables

FP

SP

retaddr
arg1
arg2

temp1
local3
local2
local1

dynlink

temp3
temp2
temp1
local2
local1

dynlink

calling frame

current frame

Frame pointer

11

void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
...

}

Used for accessing arguments and variables in the frame

Frame pointer

12

void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
...

}

Used for accessing arguments and variables in the frame

FP

SP

retaddr
a
b
...

z
y
x

dynlink

p frame

calling frame

Stack pointer

13

void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
q(4711);

}

Used for growing the stack, e.g., at a method call

Stack pointer

14

void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
q(4711);

}

Used for growing the stack, e.g., at a method call

The argument 4711 is pushed
on the stack before calling q

FP

SP

retaddr
a
b
...

4711
z
y
x

dynlink

p frame

Dynamic link

15

void p1() {
int x = 1;
int y = 2;
p2();

}

void p2() {
int z = 3;
p3();

}

void p3(){
int v = 4;

}

Points to the frame of the calling method

Dynamic link

16

void p1() {
int x = 1;
int y = 2;
p2();

}

void p2() {
int z = 3;
p3();

}

void p3(){
int v = 4;

}

Points to the frame of the calling method

Used for restoring FP when returning from a call.

FP
SP

retaddr
z=3

dynlink

v=4
dynlink

p1

retaddr
y=2
x=1

dynlink

p2

p3

Recursion

17

int f(int x) {
bool ready = x <= 1;
if (ready)
return 1;

else
return x * f(x-1);

}

void main() {
...
f(3);
...

}

Recursion

18

int f(int x) {
bool ready = x <= 1;
if (ready)
return 1;

else
return x * f(x-1);

}

void main() {
...
f(3);
...

}

Several activations of the same method

FP
SP

retaddr
1

ready=F
dynlink

ready=T
dynlink

f(3)

retaddr
2

ready=F
dynlink

f(2)

f(1)

retaddr
3
...

main

Nested methods

19

void p1() {
int x = 1;
int y = 2;

void p2() {
int z = y+1;
p3();

}

void p3(){
int t = x+3;

}

p2(); y++;
}

The methods are nested.
Supported in Algol, Pascal, Python,

but not in C, Java...

Static link – an implicit argument that points to the frame of the enclosing method.
Makes it possible to access variables in enclosing methods.

Nested methods

20

void p1() {
int x = 1;
int y = 2;

void p2() {
int z = y+1;
p3();

}

void p3(){
int t = x+3;

}

p2(); y++;
}

The methods are nested.
Supported in Algol, Pascal, Python,

but not in C, Java...

Static link – an implicit argument that points to the frame of the enclosing method.
Makes it possible to access variables in enclosing methods.

FP
SP t

dynlink

p2

retaddr
statlink

z
dynlink

p3

retaddr
statlink

y
x

dynlink

p1

Objects and methods

21

class A {
int x = 1;
int y = 2;

void ma() {
x = 3;

}
}

class B {
void mb() {
A a = ...;
a.ma();

}
}

void main() {
new B().mb();

}

This pointer – an implicit argument. Corresponds to the static link.
Makes it possible to access fields in the object.

Objects and methods

22

class A {
int x = 1;
int y = 2;

void ma() {
x = 3;

}
}

class B {
void mb() {
A a = ...;
a.ma();

}
}

void main() {
new B().mb();

}

This pointer – an implicit argument. Corresponds to the static link.
Makes it possible to access fields in the object.

retaddr
this

a
dynlink

FPSP,

retaddr
this

temp
dynlink

madynlink

mb header

header
x
y

A

B

Stack Heap

main

Access to local variable

23

void p() {
int x = 1;
int y = 2;
y++;
...

}

Assume each word is 8 bytes.

The compiler computes addresses relative to FP

FP

SP
p

y
x

dynlink

lower addresses

Access to local variable

24

void p() {
int x = 1;
int y = 2;
y++;
...

}

Assume each word is 8 bytes.

The compiler computes addresses relative to FP:

var offset address
x 1 FP-1*8
y 2 FP-2*8

Typical assembly code for y++
SUB FP 16 R1 // Compute address of y, place in R1
LOAD R1 R2 // load value of y into R2
INC R2 // increment R2
STORE R2 R1 // store new value into y

FP

SP
p

y
x

dynlink

lower addresses

Computing offsets for variables

25

void p() {
boolean f1 = true;
int x = 1;
boolean f2 = false;
if (...) {
int y = 2;
...

}
else {
int z = 3;
...

}
...

}

Simple solution: just number all the variables
and place them in consecutive words.

Computing offsets for variables

26

void p() {
boolean f1 = true;
int x = 1;
boolean f2 = false;
if (...) {
int y = 2;
...

}
else {
int z = 3;
...

}
...

}

Simple solution: just number all the variables
and place them in consecutive words.

Possible optimizations:
• Variables with disjoint lifetimes can share

the same memory cell
• Booleans can be stored in bytes or bits
• Variables can be reordered to make

efficient use of space (e.g., aligning ints
and floats to words)

...

Access to non-local variable

27

void p1() {
int x = 1;
int y = 2;
void p2() {
x++;

}
p2();

}

Access to non-local variable

28

void p1() {
int x = 1;
int y = 2;
void p2() {
x++;

}
p2();

}

Follow the static link once to get to the enclosing frame
ADD FP 16 R1 // Compute address of statlink
LOAD R1 R2 // Get address to p1's frame

SUB R2 8 R3 // Compute the address of x
LOAD R3 R4 // Load x into R4
INC R4 // Increment
STORE R4 R3 // Store the new value to memory

For deeper nesting, follow multiple static links.

The compiler knows that x is available in an instance of p1
(the enclosing block).

SP, FP p2dynlink

retaddr
statlink

y
x

dynlink

p1

Method call

29

void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5

Method call

30

void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5

1. Transfer arguments and call:
Push the arguments. Push the return address. Jump to the called method.

2. Allocate new frame: Push FP and move FP.
Move SP to make space for local variables.

3. Run the code for p2.

4. Save the return value in a register.
Move SP back to deallocate local variables.
Deallocate the frame: Move FP back. Pop FP.
Pop return address and jump to it.

5. Pop arguments. Continue executing in p1.

Method call

31

void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5

z
y
x

dynlink

p1

Step 1: Transfer arguments and call.

32

Transfer arguments:
• Push the arguments on the stack

Do the call:
• Compute the return address (e.g., PC+2*8) and push it on the stack.
• Jump to the code for p2.

(Usually an instruction "CALL p2" accomplishes these two things.)

FP

SP z
y
x

dynlink

p1

FP

SP retaddr
a
b
z
y
x

dynlink

p1

Step 2: Allocate the new frame

33

move SP to allocate space
for new locals

FP
SP

retaddr
a
b
z
y
x

dynlink

...
dynlinkp2

FP

SP
retaddr

a
b
z
y
x

dynlink

p1

dynlink

push the dynamic
link (current FP)

SP, FP
retaddr

a
b
z
y
x

dynlink

dynlink

set FP to the new
frame

Step 3: Run the code for p2

34

run the code for p2

FP
SP

retaddr
a
b
z
y
x

dynlink

p1

...
dynlink

p2

Step 4: Deallocate and return

35

Pop FP and set FP to
old value (dynlink)

FP

SP retaddr
a
b
z
y
x

dynlink

p1

FP
SP

retaddr
a
b
z
y
x

dynlink

p1

...
dynlink

p2

Store the return value
in a register.

SP, FP
retaddr

a
b
z
y
x

dynlink

p1

dynlink p2

Deallocate locals:
Move SP back to FP.

Then pop the return address and jump to it.
(Usually an instruction "RET" does this.)

Step 5: Continue executing in p1

36

• Pop the arguments
• Continue executing in p1

FP

SP a
b
z
y
x

dynlink

p1

FP

SP z
y
x

dynlink

p1

What the compiler needs to compute

37

For uses of locals and arguments
• The offsets to use (relative to the Frame Pointer)

For methods
• The space needed for local declarations and temporaries.

(Typically use push/pop for allocation/deallocation of temps.)

If nested methods are supported
• The number of static levels to use for variable accesses (0 for local vars)
• The number of static levels to use for method calls (0 for local methods)

Registers typically used for optimization

38

Registers typically used for optimization

39

Store data in registers instead of in the frame:
• The return value
• The n first arguments
• The static link
• The return address

If a new call is made, these registers must not be corrupted!

Calling conventions:
Conventions for how arguments are passed, e.g., in specific registers or in the
activation record.
Conventions for which registers must be saved (as temps) by caller or callee:

Caller-save register: The caller must save the register before calling.

Callee-save register: The called method must save these registers before using
them, and restoring them before return.

Many different variants on activation frames

40

Argument order: Forwards or backwards order in the frame?
Direction: Let the stack grow towards larger or smaller addresses?
Allocate space for vars and temps: In one chunk, or push one var at a time.
...

Machine architectures often have instructions supporting a specific activation
record design. E.g., dedicated FP and SP registers, and CALL, RETURN instructions
that manipulate them.

Summary questions

41

• What is the difference between registers and memory?
• What typical segments of memory are used?
• What is an activation frame?
• Why are activation frames put on a stack?
• What are FP, SP, and PC?
• What is the static link? Is it always needed?
• What is the dynamic link?
• What is meant by the return address?
• How can local variables be accessed?
• How can non-local variables be accessed?
• How does the compiler compute offsets for variables?
• What happens at a method call?
• What information does the compiler need to compute in order to generate

code for accessing variables? For a method call?
• What is meant by ”calling conventions”?

