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Runtime systems
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Organization of data
• Global/static data
• Activation frames (method instances)
• Objects (class instances)

Method calls
• Call and return
• Parameter transmission

Access to variables
• Local variables
• Non-local variables

Object-oriented constructs
• Inheritance
• Overriding
• Dynamic dispatch
• Garbage collection



The machine
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The machine
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Registers

CPU 

Random Access
Memory
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Registers:
Some dedicated: program counter, stack pointer, ...
Some general purpose (for computations)
Typically 32 registers.

32-bit machine: Each register is 32 bits wide. Can address max 232 bytes of RAM = 4GB.
64-bit machine: Each register is 64 bits wide. Could theoretically address max 264 bytes of RAM
(in practice, use perhaps 48 bits to address max 256 TB).

RAM:
Typically divided into 
memory segments

Typically byte-addressed. 
Like a very large array.
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Stack of activation frames
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Stack of activation frames
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The data for each
method call is stored in 
an activation frame

Synonyms:
activation record
activation
stack frame
frame

Swedish:
aktiveringspost

frame

frame

frame

code

stack 
grows

Some dedicated registers:

FP – Frame Pointer. The first word of the current frame

SP – Stack Pointer. The top of the stack.

PC – Program counter. The currently executing instruction.



Example frame layout
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Example frame layout
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The calling method pushes arguments on the stack.
The return value is placed in a register.

temps: Temporary variables

args: Arguments to current frame.

retaddr: Saved PC - where to jump at return

dynlink: Dynamic link – points to frame of calling method

locals: Local variables

FP

SP

retaddr
arg1
arg2

temp1
local3
local2
local1

dynlink

temp3
temp2
temp1
local2
local1

dynlink

calling frame

current frame



Frame pointer
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void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
...

}

Used for accessing arguments and variables in the frame



Frame pointer
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void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
...

}

Used for accessing arguments and variables in the frame

FP

SP

retaddr
a
b
...

z
y
x

dynlink

p frame

calling frame



Stack pointer
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void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
q(4711);

}

Used for growing the stack, e.g., at a method call



Stack pointer

14

void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
q(4711);

}

Used for growing the stack, e.g., at a method call

The argument 4711 is pushed
on the stack before calling q

FP

SP

retaddr
a
b
...

4711
z
y
x

dynlink

p frame



Dynamic link
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void p1() {
int x = 1;
int y = 2;
p2();

}

void p2() {
int z = 3;
p3();

}

void p3(){
int v = 4;

}

Points to the frame of the calling method



Dynamic link
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void p1() {
int x = 1;
int y = 2;
p2();

}

void p2() {
int z = 3;
p3();

}

void p3(){
int v = 4;

}

Points to the frame of the calling method

Used for restoring FP when returning from a call.

FP
SP

retaddr
z=3

dynlink

v=4
dynlink

p1

retaddr
y=2
x=1

dynlink

p2

p3



Recursion
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int f(int x) {
bool ready = x <= 1;
if (ready)
return 1;

else
return x * f(x-1);

}

void main() {
...
f(3);
...

}



Recursion
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int f(int x) {
bool ready = x <= 1;
if (ready)
return 1;

else
return x * f(x-1);

}

void main() {
...
f(3);
...

}

Several activations of the same method

FP
SP

retaddr
1

ready=F
dynlink

ready=T
dynlink

f(3)

retaddr
2

ready=F
dynlink

f(2)

f(1)

retaddr
3
...

main



Nested methods
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void p1() {
int x = 1;
int y = 2;

void p2() {
int z = y+1;
p3();

}

void p3(){
int t = x+3;

}

p2(); y++;
}

The methods are nested.
Supported in Algol, Pascal, Python, 

but not in C, Java...

Static link – an implicit argument that points to the frame of the enclosing method.
Makes it possible to access variables in enclosing methods.



Nested methods
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void p1() {
int x = 1;
int y = 2;

void p2() {
int z = y+1;
p3();

}

void p3(){
int t = x+3;

}

p2(); y++;
}

The methods are nested.
Supported in Algol, Pascal, Python, 

but not in C, Java...

Static link – an implicit argument that points to the frame of the enclosing method.
Makes it possible to access variables in enclosing methods.

FP
SP t

dynlink

p2

retaddr
statlink

z
dynlink

p3

retaddr
statlink

y
x

dynlink

p1



Objects and methods
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class A {
int x = 1;
int y = 2;

void ma() {
x = 3;

}
}

class B {
void mb() {
A a = ...;
a.ma();

}
}

void main() {
new B().mb();

}

This pointer – an implicit argument. Corresponds to the static link.
Makes it possible to access fields in the object.



Objects and methods
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class A {
int x = 1;
int y = 2;

void ma() {
x = 3;

}
}

class B {
void mb() {
A a = ...;
a.ma();

}
}

void main() {
new B().mb();

}

This pointer – an implicit argument. Corresponds to the static link.
Makes it possible to access fields in the object.

retaddr
this

a
dynlink

FPSP,

retaddr
this

temp
dynlink

madynlink

mb header

header
x
y

A

B

Stack Heap

main



Access to local variable
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void p() {
int x = 1;
int y = 2;
y++;
...

}

Assume each word is 8 bytes.

The compiler computes addresses relative to FP

FP

SP
p

y
x

dynlink

lower addresses



Access to local variable
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void p() {
int x = 1;
int y = 2;
y++;
...

}

Assume each word is 8 bytes.

The compiler computes addresses relative to FP:

var  offset  address
x      1     FP-1*8
y      2     FP-2*8

Typical assembly code for y++
SUB   FP  16  R1     // Compute address of y, place in R1
LOAD  R1  R2         // load value of y into R2
INC   R2             // increment R2
STORE R2  R1         // store new value into y

FP

SP
p

y
x

dynlink

lower addresses



Computing offsets for variables
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void p() {
boolean f1 = true;
int x = 1;
boolean f2 = false;
if (...) {
int y = 2;
...

}
else {
int z = 3; 
...

}
...

}

Simple solution: just number all the variables 
and place them in consecutive words.



Computing offsets for variables
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void p() {
boolean f1 = true;
int x = 1;
boolean f2 = false;
if (...) {
int y = 2;
...

}
else {
int z = 3; 
...

}
...

}

Simple solution: just number all the variables 
and place them in consecutive words.

Possible optimizations:
• Variables with disjoint lifetimes can share 

the same memory cell
• Booleans can be stored in bytes or bits
• Variables can be reordered to make 

efficient use of space (e.g., aligning ints 
and floats to words)

...



Access to non-local variable
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void p1() {
int x = 1;
int y = 2;
void p2() {
x++;

}
p2();

}



Access to non-local variable
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void p1() {
int x = 1;
int y = 2;
void p2() {
x++;

}
p2();

}

Follow the static link once to get to the enclosing frame
ADD   FP  16  R1  // Compute address of statlink
LOAD  R1  R2      // Get address to p1's frame

SUB   R2  8   R3  // Compute the address of x
LOAD  R3  R4      // Load x into R4
INC   R4          // Increment
STORE R4  R3      // Store the new value to memory

For deeper nesting, follow multiple static links.

The compiler knows that x is available in an instance of p1 
(the enclosing block).

SP, FP p2dynlink

retaddr
statlink

y
x

dynlink

p1



Method call
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void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5



Method call
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void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5

1. Transfer arguments and call:
Push the arguments. Push the return address. Jump to the called method.

2. Allocate new frame: Push FP and move FP.
Move SP to make space for local variables.

3. Run the code for p2.

4. Save the return value in a register.
Move SP back to deallocate local variables.
Deallocate the frame: Move FP back. Pop FP.
Pop return address and jump to it.

5. Pop arguments. Continue executing in p1.



Method call
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void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5

z
y
x

dynlink

p1



Step 1: Transfer arguments and call.
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Transfer arguments:
• Push the arguments on the stack

Do the call:
• Compute the return address (e.g., PC+2*8) and push it on the stack.
• Jump to the code for p2.

(Usually an instruction "CALL p2" accomplishes these two things.)

FP

SP z
y
x

dynlink

p1

FP

SP retaddr
a
b
z
y
x

dynlink

p1



Step 2: Allocate the new frame
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move SP to allocate space 
for new locals

FP
SP

retaddr
a
b
z
y
x

dynlink

...
dynlinkp2

FP

SP
retaddr

a
b
z
y
x

dynlink

p1

dynlink

push the dynamic
link (current FP)

SP, FP
retaddr

a
b
z
y
x

dynlink

dynlink

set FP to the new 
frame



Step 3: Run the code for p2

34

run the code for p2 

FP
SP

retaddr
a
b
z
y
x

dynlink

p1

...
dynlink

p2



Step 4: Deallocate and return
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Pop FP and set FP to
old value (dynlink)

FP

SP retaddr
a
b
z
y
x

dynlink

p1

FP
SP

retaddr
a
b
z
y
x

dynlink

p1

...
dynlink

p2

Store the return value
in a register.

SP, FP
retaddr

a
b
z
y
x

dynlink

p1

dynlink p2

Deallocate locals:
Move SP back to FP.

Then pop the return address and jump to it. 
(Usually an instruction "RET" does this.)



Step 5: Continue executing in p1
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• Pop the arguments
• Continue executing in p1

FP

SP a
b
z
y
x

dynlink

p1

FP

SP z
y
x

dynlink

p1



What the compiler needs to compute
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For uses of locals and arguments
• The offsets to use (relative to the Frame Pointer)

For methods
• The space needed for local declarations and temporaries.

(Typically use push/pop for allocation/deallocation of temps.)

If nested methods are supported
• The number of static levels to use for variable accesses (0 for local vars)
• The number of static levels to use for method calls (0 for local methods)



Registers typically used for optimization
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Registers typically used for optimization
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Store data in registers instead of in the frame:
• The return value
• The n first arguments
• The static link
• The return address

If a new call is made, these registers must not be corrupted!

Calling conventions:
Conventions for how arguments are passed, e.g., in specific registers or in the 
activation record.
Conventions for which registers must be saved (as temps) by caller or callee:

Caller-save register: The caller must save the register before calling.

Callee-save register: The called method must save these registers before using
them, and restoring them before return.



Many different variants on activation frames
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Argument order: Forwards or backwards order in the frame?
Direction: Let the stack grow towards larger or smaller addresses?
Allocate space for vars and temps: In one chunk, or push one var at a time.
...

Machine architectures often have instructions supporting a specific activation
record design. E.g., dedicated FP and SP registers, and CALL, RETURN instructions
that manipulate them.



Summary questions
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• What is the difference between registers and memory?
• What typical segments of memory are used?
• What is an activation frame?
• Why are activation frames put on a stack?
• What are FP, SP, and PC?
• What is the static link? Is it always needed?
• What is the dynamic link?
• What is meant by the return address?
• How can local variables be accessed?
• How can non-local variables be accessed?
• How does the compiler compute offsets for variables?
• What happens at a method call?
• What information does the compiler need to compute in order to generate

code for accessing variables? For a method call?
• What is meant by ”calling conventions”?


