EDAN65: Compilers, Lecture 05 A LL parsing Nullable, FIRST, and FOLLOW

Görel Hedin Revised: 2021-09-13

Algorithm for constructing an LL(1) parser

Fairly simple. The non-trivial part:

how to select the correct production **p** for **X**, based on the lookahead token.

p1: X -> ... p2: X -> ...

Algorithm for constructing an LL(1) parser

Fairly simple. The non-trivial part:

how to select the correct production **p** for **X**, based on the lookahead token.

p1: X -> ... p2: X -> ...

- Which tokens can occur in the FIRST position?
- Can one of the productions derive the empty string? I.e., is it "Nullable"?
- If it is Nullable, which tokens can occur in the FOLLOW position?

Steps in constructing an LL(1) parser

- 1. Write the grammar on canonical form
- 2. Compute Nullable, FIRST, and FOLLOW.
- 3. Use them to construct a table. It shows what production to select, given the current lookahead token.
- 4. Conflicts in the table? The grammar is not LL(1).
- 5. No conflicts? Straightforward implementation using table-driven parser or recursive descent.

	t ₁	t ₂	t ₃	t ₄
X ₁	p1	p2		
X ₂		р3	р3	p4

Construct the LL(1) table for this grammar:

```
p1: statement -> assignment
```

```
p2: statement -> compoundStmt
```

```
p3: assignment -> ID "=" expr ";"
```

```
p4: compoundStmt -> "{" statements "}"
```

p5: statements -> statement statements

p6: statements -> ε

	ID	"="	";"	"{"	"}"
statement					
assignment					
compoundStmt					
statements					

For each production **p**: **X** -> γ , we are interested in:

FIRST(γ) – the tokens that occur first in a sentence derived from γ .

Nullable(γ) – is it possible to derive ε from γ ? And if so:

FOLLOW(X) – the tokens that can occur immediately after an X-sentence.

Construct the LL(1) table for this grammar:

p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> ε

	ID	"="	";"	"{"	"}"
statement					
assignment					
compoundStmt					
statements					

To construct the table, look at each production p: $X \rightarrow \gamma$.

Compute the token set FIRST(γ). Add **p** to each corresponding entry for X. Then, check if γ is Nullable. If so, compute the token set FOLLOW(X), and add **p** to each corresponding entry for X.

Construct the LL(1) table for this grammar:

p1: statement -> assignment
p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"
p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements
p6: statements -> ε

	ID	"="	";"	"{"	"}"
statement	p1			p2	
assignment	р3				
compoundStmt				p4	
statements	р5			р5	p6

To construct the table, look at each production **p**: $X \rightarrow \gamma$.

Compute the token set FIRST(γ). Add **p** to each corresponding entry for X. Then, check if γ is Nullable. If so, compute the token set FOLLOW(X), and add **p** to each corresponding entry for X.

Example: Dealing with End of File:

p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> ε

	ID	integer	boolean	"="	";"	INT	
varDecl							
type							
optInit							

Example: Dealing with End of File:

p0: S -> varDecl \$
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> ε

	ID	integer	boolean	"="	";"	INT	\$
S							
varDecl							
type							
optInit							

Example: Dealing with End of File:

p0: S -> varDecl \$
p1: varDecl -> type ID optInit
p2: type -> "integer"
p3: type -> "boolean"
p4: optInit -> "=" INT
p5: optInit -> ε

	ID	integer	boolean	"="	";"	INT	\$
S		p0	p0				
varDecl		p1	p1				
type		p2	р3				
optlnit				p4			р5

Ambiguous grammar:

p1: E -> E "+" E p2: E -> ID p3: E -> INT

	"+"	ID	INT
Е			

Ambiguous grammar:

p1: E -> E "+" E p2: E -> ID p3: E -> INT

	"+"	ID	INT
E		p1, p2	p1, p3

Collision in a table entry! The grammar is not LL(1)

An ambiguous grammar is not even LL(k) – adding more lookahead does not help.

Unambiguous, but left-recursive grammar:

	"*"	ID	INT
E			
F			

Unambiguous, but left-recursive grammar:

p1: E -> E "*" F p2: E -> F p3: F -> ID p4: F -> INT

	"*"	ID	INT
Е		p1,p2	p1,p2
F		р3	p4

Collision in a table entry! The grammar is not LL(1)

A grammar with left-recursion is not even LL(k) – adding more lookahead does not help.

Grammar with common prefix:

	"*"	ID	INT	"("	")"
Е					
F					

Grammar with common prefix:

	"*"	ID	INT	"("	")"
E		p1,p2	p1,p2	p1,p2	
F		р3	p4	p5	

Collision in a table entry! The grammar is not LL(1)

A grammar with common prefix is not LL(1). Some grammars with common prefix are LL(k), for some k, – but not this one.

Summary: constructing an LL(1) parser

- 1. Write the grammar on canonical form
- 2. Compute Nullable, FIRST, and FOLLOW.
- 3. Use them to construct a table. It shows what production to select, given the current lookahead token.
- 4. Conflicts in the table? The grammar is not LL(1).
- 5. No conflicts? Straight forward implementation using table-driven parser or recursive descent.

Algorithm for constructing an LL(1) table

```
initialize all entries table[X<sub>i</sub>, t<sub>i</sub>] to the empty set.
```

```
for each production p: X -> \gamma
for each t \in FIRST(\gamma)
add p to table[X, t]
if Nullable(\gamma)
for each t \in FOLLOW(X)
add p to table[X, t]
```

	t ₁	t ₂	t ₃	t ₄
X ₁	p1	p2		
X ₂		р3	р3	p4

If some entry has more than one element, then the grammar is not LL(1).

Exercise: what is Nullable(X)?

Z -> d	
Z -> X Y Z	X
3 <- Υ	v
Y -> c	T
X -> Y	Ζ
<mark>X</mark> -> a	

	Nullable
X	
Y	
Z	

Solution: what is Nullable(X)

Z -> d		Nullable
Z -> X Y Z	X	true
Y -> ε Y -> c	Υ	true
X -> Y	Z	false
X -> a		

3 <= Υ <= X	yes, X is Nullable
3 <= Υ	yes, Y is Nullable
Z => XYZ => YYZ =>* Z => XYZ	no, Z is not Nullable, we cannot derive ϵ

Definition of Nullable

Definition of Nullable

DefinitionNullable(γ) is true iff the empty sequence can be derived from γ , i.e.,iff there exists a derivation $\gamma => * \varepsilon$ (γ is a sequence of terminals and nonterminals)	
Do case analysis to get equation system for Nullable, given G=(N,T,P,S, Nullable(ε) == true) (1)
Nullable(t) == false where t ∈ T, i.e., t is a terminal symbol	(2)
Nullable(X) == Nullable (γ_1) Nullable (γ_n) where X -> γ_1 , X -> γ_n are all the productions for X in P	(3)
Nullable(s γ) == Nullable (s) && Nullable (γ) where s \in N \cup T, i.e., s is a nonterminal or a terminal	(4)

The equations for Nullable are recursive. How would you write a program that computes Nullable (X)? Just using recursive functions could lead to nontermination!

Fixed-point problems

Fixed-point problems

Computing Nullable(X) is an example of a *fixed-point problem*.

These problems have the form:

x == f(x)

Can we find a value **x** for which the equation holds (i.e., a solution)? **x** is then called a *fixed point* of the function **f**.

Fixed-point problems can (sometimes) be solved using iteration: Guess an initial value x_0 , then apply the function iteratively, until the fixed point is reached:

 $\begin{aligned} x_{1} &:= f(x_{0}); \\ x_{2} &:= f(x_{1}); \\ \cdots \\ x_{n} &:= f(x_{n-1}); \\ until x_{n} &= x_{n-1} \end{aligned}$

This is called a fixed-point iteration, and x_n is the fixed point.

Implement Nullable by a fixed-point iteration

Implement Nullable by a fixed-point iteration

```
represent Nullable as an array nlbl[] of boolean variables initialize all nlbl[X] to false
```

```
repeat

changed = false

for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n do

newValue = nlbl(\gamma_1) || ... || nlbl(\gamma_n)

if newValue != nlbl[X] then

nlbl[X] = newValue

changed = true

fi

do

until !changed

where nlbl(\gamma) is computed using the current values in nlbl[].
```

Implement Nullable by a fixed-point iteration

```
represent Nullable as an array nlbl[] of boolean variables
initialize all nlbl[X] to false
repeat
changed = false
for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n do
newValue = nlbl(\gamma_1) || ... || nlbl(\gamma_n)
if newValue != nlbl[X] then
nlbl[X] = newValue
changed = true
fi
do
until !changed
where nlbl(\gamma) is computed using the current values in nlbl[].
```

The computation will terminate because

- the variables are only changed monotonically (from false to true)
- the number of possible changes is finite (from all false to all true)

Exercise: compute Nullable(X)

In each iteration, compute:

for each nonterminal X with productions X -> γ_1 , ..., X -> γ_n newValue = nlbl(γ_1) || ... || nlbl(γ_n)

where $nlbl(\gamma)$ is computed using the current values in nlbl[].

Solution: compute Nullable(X)

In each iteration, compute:

for each nonterminal X with productions X -> γ_1 , ..., X -> γ_n newValue = nlbl(γ_1) || ... || nlbl(γ_n)

where $nlbl(\gamma)$ is computed using the current values in nlbl[].

Definition of **FIRST**

Definition of **FIRST**

FIRST(γ) is the set of tokens that can occur *first* in sentences derived from γ : FIRST(γ) = {t $\in T \mid \gamma = >^* t \delta$ }

 $Do \ case \ analysis \ to \ get \ equation \ system \ for \ FIRST, \ given \ G=(N,T,P,S)$ $FIRST(\varepsilon) == \emptyset$ (1) $FIRST(t) == \{ t \}$ (2) $where \ t \in T, \ i.e., \ t \ is \ a \ terminal \ symbol$ (2) $FIRST(X) == \ FIRST(\gamma_1) \cup ... \cup \ FIRST(\gamma_n)$ (3) $where \ X \rightarrow \gamma_1, \ ... \ X \rightarrow \gamma_n \ are \ all \ the \ productions \ for \ X \ in \ P$ $FIRST(s\gamma) == \ FIRST(s) \cup (if \ Nullable(s) \ then \ FIRST(\gamma) \ else \ \emptyset \ fi)$ (4) $where \ s \in N \cup T, \ i.e., \ s \ is \ a \ nonterminal \ or \ a \ terminal$

The equations for **FIRST** are recursive. Compute using fixed-point iteration.

Implement FIRST by a fixed-point iteration

Implement FIRST by a fixed-point iteration

```
represent FIRST as an array FIRST[] of token sets initialize all FIRST[X] to the empty set
```

```
repeat

changed = false

for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n do

newValue = FIRST(\gamma_1) U ... U FIRST(\gamma_n)

if newValue != FIRST[X] then

FIRST[X] = newValue

changed = true

fi

do

until !changed

where FIRST(\gamma) is computed using the current values in FIRST[].
```

Implement **FIRST** by a fixed-point iteration

```
represent FIRST as an array FIRST[] of token sets
initialize all FIRST[X] to the empty set
repeat
changed = false
for each nonterminal X with productions X -> \gamma_1, ..., X -> \gamma_n do
newValue = FIRST(\gamma_1) U ... U FIRST(\gamma_n)
if newValue != FIRST[X] then
FIRST[X] = newValue
changed = true
fi
do
until !changed
where FIRST(\gamma) is computed using the current values in FIRST[].
```

The computation will terminate because

- the variables are changed monotonically (using set union)
- the largest possible set is finite: T, the set of all tokens
- the number of possible changes is therefore finite

Solution: compute FIRST(X)

Z -> d		Nullable
Z -> X Y Z	X	t
3 <- Υ Υ -> C Χ -> Υ	Υ	t
X -> Y	Z	f
X -> a		

FIRST[]

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø			
Υ	Ø			
Z	Ø			

In each iteration, compute:

for each nonterminal X with productions X -> γ_1 , ..., X -> γ_n newValue = FIRST(γ_1) U ... U FIRST(γ_n)

where $FIRST(\gamma)$ is computed using the current values in FIRST[].

Exercise: compute FIRST(X)

Z -> d		Nullable
Z -> X Y Z	X	t
3 <- Υ Υ -> C Χ -> Υ	Υ	t
X -> Y	Z	f
X -> a		

FIRST[]

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø	{a}	{a, c}	{a, c}
Υ	Ø	{c}	{c}	{c}
Z	Ø	{a, c, d}	{a, c, d}	{a, c, d}

In each iteration, compute:

for each nonterminal X with productions X -> γ_1 , ..., X -> γ_n newValue = FIRST(γ_1) U ... U FIRST(γ_n)

where $FIRST(\gamma)$ is computed using the current values in FIRST[].

Definition of **FOLLOW**

Definition of **FOLLOW**

FOLLOW(X) is the set of tokens that can occur as the *first* token *following* X, in any sentential form derived from the start symbol S: FOLLOW(X) = $\{t \in T | S = >^* \alpha X t \beta\}$

The nonterminal X occurs in the right-hand side of a number of productions.

Let Y -> γ X δ denote such an occurrence, where γ and δ are arbitrary sequences of terminals and nonterminals.

Equation system for FOLLOW, given G=(N,T,P,S)

```
FOLLOW(X) == U FOLLOW(Y -> \gamma X \delta), (1)
over all occurrences Y -> \gamma X \delta
and where
```

FOLLOW(Y -> $\gamma X \delta$) == FIRST(δ) U (if Nullable(δ) then FOLLOW(Y) else Ø fi)

(2)

The equations for FOLLOW are recursive. Compute using fixed-point iteration.

sentential form — sequence of terminal and nonterminal symbols

Implement FOLLOW by a fixed-point iteration

Implement FOLLOW by a fixed-point iteration

```
represent FOLLOW as an array FOLLOW[] of token sets
initialize all FOLLOW[X] to the empty set
repeat
changed = false
for each nonterminal X do
newValue == U FOLLOW(Y -> \gamma \times \delta), for each occurrence Y -> \gamma \times \delta
if newValue != FOLLOW[X] then
FOLLOW[X] = newValue
changed = true
fi
do
until !changed
where FOLLOW(Y -> \gamma \times \delta) is computed using the current values in FOLLOW[].
```

Implement FOLLOW by a fixed-point iteration

```
represent FOLLOW as an array FOLLOW[] of token sets
initialize all FOLLOW[X] to the empty set
repeat
changed = false
for each nonterminal X do
newValue == U FOLLOW(Y -> \gamma \times \delta), for each occurrence Y -> \gamma \times \delta
if newValue != FOLLOW[X] then
FOLLOW[X] = newValue
changed = true
fi
do
until !changed
where FOLLOW(Y -> \gamma \times \delta) is computed using the current values in FOLLOW[].
```

Again, the computation will terminate because

- the variables are changed monotonically (using set union)

- the largest possible set is finite: T

Exercise: compute FOLLOW(X)

	Nullable	FIRST
X	t	{a, c}
Y	t	{c}
Z	f	{a, c, d}

FOLLOW[]

The grammar has been extended with end of file, \$.

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø			
Υ	Ø			
Z	Ø			

In each iteration, compute:

newValue == U FOLLOW(Y -> $\gamma \times \delta$), for each occurrence Y -> $\gamma \times \delta$

where FOLLOW(Y -> $\gamma X \delta$) is computed using the current values in FOLLOW[].

Solution: compute FOLLOW(X)

	Nullable	FIRST
X	t	{a, c}
Y	t	{c}
Z	f	{a, c, d}

FOLLOW[]

The grammar has been extended with end of file, \$.

	iter ₀	iter ₁	iter ₂	iter ₃
X	Ø	{a, c, d}	{a, c, d}	
Υ	Ø	{a, c, d}	{a, c, d}	
Z	Ø	{\$}	{\$}	

In each iteration, compute:

newValue == U FOLLOW(Y -> $\gamma \times \delta$), for each occurrence Y -> $\gamma \times \delta$

where FOLLOW(Y -> $\gamma X \delta$) is computed using the current values in FOLLOW[].

Summary questions

- Construct an LL(1) table for a grammar.
- What does it mean if there is a collision in an LL(1) table?
- Why can it be useful to add an end-of-file rule to some grammars?
- How can we decide if a grammar is LL(1) or not?
- What is the definition of Nullable, FIRST, and FOLLOW?
- What is a fixed-point problem?
- How can it be solved using iteration?
- How can we know that the computation terminates?