EDAN65: Compilers, Lecture 03 Context-free grammars, Introduction to parsing

> Görel Hedin Revised: 2021-09-06

Analyzing program text

non-tokens (like white space) are discarded

Recall: Generating the compiler:

We will use a parser generator called **Beaver**

Context-Free Grammars

Regular Expressions vs Context-Free Grammars

Example REs: WHILE = "while" ID = [a-z][a-z0-9]* LPAR = "(" RPAR = ")" PLUS = "+" Example CFG: Stmt -> WhileStmt Stmt -> AssignStmt WhileStmt -> WHILE LPAR Exp RPAR Stmt Exp -> ID Exp -> Exp PLUS Exp

An RE can have iteration

. . .

A CFG can also have *recursion* (it is possible to derive a symbol, e.g., **Stmt**, from itself)

Elements of a Context-Free Grammar

```
Example CFG:
Stmt -> WhileStmt
Stmt -> AssignStmt
WhileStmt -> WHILE LPAR Exp RPAR Stmt
AssignStmt -> ID EQ Exp SEMIC
...
```

Production rules:

 $X \rightarrow S_1 S_2 \dots S_n$

where s_k is a *symbol* (terminal or nonterminal), $n \ge 0$

Nonterminal symbols

Terminal symbols (tokens)

Start symbol

(one of the nonterminals, usually the left-hand side of the first production)

Shorthand for alternatives

Stmt -> WhileStmt | AssignStmt

is equivalent to

Stmt -> WhileStmt
Stmt -> AssignStmt

Shorthand for repetition

is equivalent to

StmtList

where

StmtList -> ε | Stmt StmtList

Exercise

Construct a grammar covering this program and similar ones:

Example program:

while $(k \le n) \{sum = sum + k; k = k+1;\}$

Solution

Construct a grammar covering this program and similar ones:

Example program:

while $(k \le n) \{ sum = sum + k; k = k+1; \}$

CFG:

```
Stmt -> WhileStmt | AssignStmt | Block
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Exp -> LessEq | Add | ID | INT
LessEq -> Exp "<=" Exp
Add -> Exp "+" Exp
```

(Often, simple tokens are written directly as text strings)

Parsing

Use the grammar to derive a tree for a program (top-down):

Start symbol → Stmt

Stmt -> WhileStmt | AssignStmt | Block WhileStmt -> "while" "(" Exp ")" Stmt AssignStmt -> ID "=" Exp ";" Block -> "{" Stmt* "}" Exp -> LessEq | Add | ID | INT LessEq -> Exp "<=" Exp</pre> Add -> Exp "+" Exp

sum = sum + k;

Parsing

Use the grammar to derive a tree for a program (bottom-up):

Stmt -> WhileStmt | AssignStmt | Block
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Exp -> LessEq | Add | ID | INT
LessEq -> Exp "<=" Exp
Add -> Exp "+" Exp

sum = sum + k;

Parsing

Use the grammar to derive a tree for a program:

Stmt

AssignStmt

Exp

Exp

sum

=

Add

Exp

Start symbol

A parse tree includes *all* the input tokens as leaves.

Nonterminals are inner nodes

sum + k ; Terminals are leaves 14

Corresponding abstract syntax tree

(will be discussed in later lecture)

EBNF vs Canonical Form

EBNF:

```
Stmt -> AssignStmt | Block
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Exp -> Add | ID
Add -> Exp "+" Exp
```

Canonical form:

<pre>Stmt -></pre>	ID	"="	Exp	";"
<pre>Stmt -></pre>	"{"	Str	its	"}"
Stmts -	3 <			
Stmts -	> Sti	nt S	Stmt	S
Exp ->	Ехр	"+"	Exp	
Exp ->	ID		-	

(Extended) Backus-Naur Form:

- Compact, easy to read and write
- BNF has alternatives
- EBNF has additionally repetition, optionals, parentheses (like REs)
- Common notation for practical use

Canonical form:

- Core formalism for CFGs
- Useful for proving properties and explaining algorithms

Real world example: The Java Language Specification

```
OrdinaryCompilationUnit:

[PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

PackageDeclaration:

{PackageModifier} package Identifier {. Identifier} ;

PackageModifier:

Annotation
```

See https://docs.oracle.com/javase/specs/jls/se11/html

- See Chapter 2 about the Java grammar notation.
- See Chapter 19 for the full syntax

Formal definition of CFGs

Formal definition of CFGs (canonical form)

A context-free grammar G = (N, T, P, S), where N - the set of nonterminal symbols T - the set of terminal symbols P - the set of production rules, each with the form $X -> Y_1 Y_2 ... Y_n$ where $X \in N$, $n \ge 0$, and $Y_k \in N \cup T$ S - the start symbol (one of the nonterminals). I.e., $S \in N$

Formal definition of CFGs (canonical form)

A context-free grammar G = (N, T, P, S), where N - the set of nonterminal symbols T - the set of terminal symbols P - the set of production rules, each with the form $X -> Y_1 Y_2 ... Y_n$ where $X \in N$, $n \ge 0$, and $Y_k \in N \cup T$ S - the start symbol (one of the nonterminals). I.e., $S \in N$

So, the *left-hand side* X of a rule is a nonterminal.

And the *right-hand side* $Y_1 Y_2 \dots Y_n$ is a sequence of nonterminals and terminals.

If the rhs for a production is empty, i.e., n = 0, we write $X \rightarrow \varepsilon$

A grammar G defines a language L(G)

A context-free grammar G = (N, T, P, S), where N - the set of nonterminal symbols T - the set of terminal symbols P - the set of production rules, each with the form $X -> Y_1 Y_2 ... Y_n$ where $X \in N$, $n \ge 0$, and $Y_k \in N \cup T$ S - the start symbol (one of the nonterminals). I.e., $S \in N$

A grammar G defines a language L(G)

A context-free grammar G = (N, T, P, S), where N – the set of nonterminal symbols T – the set of terminal symbols P – the set of production rules, each with the form $X \rightarrow Y_1 Y_2 \dots Y_n$ where $X \in N$, $n \ge 0$, and $Y_k \in N \cup T$ S – the start symbol (one of the nonterminals). I.e., $S \in N$

G defines a *language* L(G) over the alphabet T

T* is the set of all possible sequences of T symbols.

L(G) is the subset of T* that can be derived from the start symbol S, by following the production rules P.

Exercise

```
G = (N, T, P, S)
                                   L(G) =
P = {
  Stmt -> ID "=" Exp ";",
  Stmt -> "{" Stmts "}" ,
  Stmts \rightarrow \epsilon,
  Stmts -> Stmt Stmts ,
  Exp -> Exp "+" Exp ,
  Exp -> ID
}
N =
T =
S =
```

Solution

```
G = (N, T, P, S)
                                         L(G) = \{
                                          "{" "}",
                                          "{" "{" "}" "}",
P = {
  Stmt -> ID "=" Exp ";",
                                          ID "=" ID ";"
  Stmt -> "{" Stmts "}" ,
                                          "{" ID "=" ID ";" "}",
  Stmts \rightarrow \epsilon,
                                          ID "=" ID "+" ID ";"
                                            {" "{" "}" "{" "}" "}".
  Stmts -> Stmt Stmts ,
  Exp \rightarrow Exp "+" Exp ,
                                          "{" "{" "{" "}" "}" "}"
  Exp -> ID
                                          "{" ID "=" ID "+" ID ";" "}",
}
                                          ID "=" ID "+" ID "+" ID ";",
                                          . . .
N = {Stmt, Exp, Stmts}
T = {ID, "=", "{", "}", ";", "+"}
S = Stmt
                                         }
```

The sequences in L(G) are usually called *sentences* or *strings*

Derivations

Derivation step

If we have a sequence of terminals and nonterminals, e.g.,

X a Y Y b

we can replace one of the nonterminals, applying a production rule. This is called a *derivation step*. (Swedish: *Härledningssteg*)

Derivation step

If we have a sequence of terminals and nonterminals, e.g.,

X a Y Y b

we can replace one of the nonterminals, applying a production rule. This is called a *derivation step*. (Swedish: *Härledningssteg*)

Suppose there is a production

Y -> X a

and we apply it for the first Y in the sequence. We write the derivation step as follows:

X a **Y Y** b => **X** a **X** a **Y** b

Derivation

A *derivation*, is simply a sequence of derivation steps, e.g.:

 $\gamma_0 => \gamma_1 => \dots => \gamma_n \qquad (n \ge 0)$

where each γ_i is a sequence of terminals and nonterminals

If there is a derivation from γ_0 to γ_n , we can write this as

 $\gamma_0 => * \gamma_n$

So this means it is possible to get from the sequence γ_0 to the sequence γ_n by applying 0 or more production rules.

Definition of the language L(G)

Recall that:

G = (N, T, P, S)

T* is the set of all possible sequences of T symbols.

L(G) is the subset of T* that can be derived from the start symbol S, by applying production rules in P.

Definition of the language L(G)

Recall that:

G = (N, T, P, S)

T* is the set of all possible sequences of T symbols.

L(G) is the subset of T* that can be derived from the start symbol S, by applying production rules in P.

Using the concept of derivations, we can formally define L(G) as follows:

 $L(G) = \{ w \in T^* | S = >^* w \}$

Exercise:

Prove that a sentence belongs to a language

Prove that	belongs to the language of the following
INT + INT * INT	grammar:
	<pre>p1: Exp -> Exp "+" Exp p2: Exp -> Exp "*" Exp</pre>
-	p_3 : Exp \rightarrow INT

Proof:

Solution:

Prove that a sentence belongs to a language

Prove that		belongs to the language of the following	
INT + INT * INT		grammar:	
		p ₁ : Exp -> Exp "+" Exp	
		p ₂ : Exp -> Exp "*" Exp	
		p_3 : Exp \rightarrow INT	

Proof: (by showing all the derivation steps from the start symbol Exp) Exp $=>^{p1} Exp "+" Exp$ $=>^{p3} INT "+" Exp$ $=>^{p2} INT "+" Exp "*" Exp$ $=>^{p3} INT "+" INT "*" Exp$ $=>^{p3} INT "+" INT "*" INT$

Leftmost and rightmost derivations

 p_1 :
 $Exp \rightarrow Exp "+" Exp$
 p_2 :
 $Exp \rightarrow Exp "*" Exp$
 p_3 :
 $Exp \rightarrow INT$

In a *leftmost* derivation, the leftmost nonterminal is replaced in each derivation step, e.g.,:

Exp => Exp "+" Exp => INT "+" Exp => INT "+" Exp "*" Exp => INT "+" INT "*" Exp => INT "+" INT "*" INT

Leftmost and rightmost derivations

```
    p<sub>1</sub>: Exp -> Exp "+" Exp
    p<sub>2</sub>: Exp -> Exp "*" Exp
    p<sub>3</sub>: Exp -> INT
```

In a *leftmost* derivation, the leftmost nonterminal is replaced in each derivation step, e.g.,:

Exp => Exp "+" Exp => INT "+" Exp => INT "+" Exp "*" Exp => INT "+" INT "*" Exp => INT "+" INT "*" INT In a *rightmost* derivation, the rightmost nonterminal is replaced in each derivation step, e.g.,:

```
Exp =>
Exp "+" Exp =>
Exp "+" Exp "*" Exp =>
Exp "+" Exp "*" INT =>
Exp "+" INT "*" INT =>
INT "+" INT "*" INT
```

LL parsing algorithms use leftmost derivation. LR parsing algorithms use rightmost derivation. Will be discussed in later lectures.

A derivation corresponds to building a parse tree

Grammar:

Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT

Example derivation:

Exp => Exp "+" Exp => INT "+" Exp => INT "+" Exp "*" Exp => INT "+" INT "*" Exp => INT "+" INT "*" INT Exercise: draw the parse tree (also called derivation tree).

A derivation corresponds to building a parse tree

Grammar: Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT Parse tree (derivation tree):

Ambiguities

Exercise:

Can we do another derivation of the same sentence,

that gives a different parse tree?

One derivation and parse tree

Exp => Exp "+" Exp => INT "+" Exp => INT "+" Exp "*" Exp => INT "+" INT "*" Exp => INT "+" INT "*" INT

Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT

Other derivation that gives *different* parse tree

Solution:

Can we do another derivation of the same sentence,

that gives a different parse tree?

One derivation and parse tree

Exp => Exp "+" Exp => INT "+" Exp => INT "+" Exp "*" Exp => INT "+" INT "*" Exp => INT "+" INT "*" INT

Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT

Other derivation that gives *different* parse tree

Which parse tree would we prefer?

Ambiguous context-free grammars

A CFG is *ambiguous* if a sentence in the language can be derived by two (or more) *different* parse trees.

A CFG is *unambiguous* if each sentence in the language can be derived by only *one* parse tree.

(Swedish: tvetydig, otvetydig)

Note! There can be many different derivations that give the same parse tree.

How can we know if a CFG is ambiguous?

How can we know if a CFG is ambiguous?

If we find an example of an ambiguity, we know the grammar is ambiguous.

There are algorithms for deciding if a CFG belongs to certain subsets of CFGs, e.g. LL, LR, etc. (See later lectures.) These grammars are unambiguous.

But in the general case, the problem is *undecidable*: it is not possible to construct a general algorithm that decides ambiguity for an arbitrary CFG.

Strategies for eliminating ambiguities, next lecture.

Parsing

Different parsing algorithms

Different parsing algorithms

LL:

Left-to-right scan Leftmost derivation Builds tree top-down Simple to understand

LR:

Left-to-right scan Rightmost derivation Builds tree bottom-up More powerful

The token is called lookahead. LL(*k*) and LR(*k*) use *k* lookahead tokens.

In practice, k=1 is usually used

Recursive-descent parsing

A way of programming an LL(1) parser by recursive method calls

Recursive-descent parsing

A way of programming an LL(1) parser by recursive method calls

A -> B | C | D B -> e C f D C -> ... D -> ...

Assume a BNF grammar with exactly *one* production rule for each nonterminal. (Can easily be generalized to EBNF.)

Each production rule RHS is either

- 1. a sequence of token/nonterminal symbols, or
- 2. a set of nonterminal symbol alternatives

For each nonterminal, a method is constructed. The method

- 1. matches tokens and calls nonterminal methods, or
- 2. calls one of the nonterminal methods which one depends on the lookahead token.

If the lookahead token does not match, a parsing error is reported.

Example Java implementation: overview

statement -> assignment | block
assignment -> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE

•••

...

2

class Parser {
 private int token;
 void accept(int t) {...}
 void error(String str) {...}
 void statement() {...}
 void assignment() {...}
 void block() {...}

private int token;// current lookahead tokenvoid accept(int t) {...}// accept t and read in next tokenvoid error(String str) {...}// generate error message

Example: Parser skeleton details

```
statement -> assignment | block
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE
expr -> ...
```

```
class Parser {
final static int ID=1, WHILE=2, DO=3, ASSIGN=4, ...;
 private int token; // current lookahead token
void accept(int t) {
                             // accept t and read in next token
 if (token==t) {
   token = nextToken();
 } else {
   error("Expected " + t + " , but found " + token);
void error(String str) {...} // generate error message
 private int nextToken() {...} // read next token from scanner
void statement() ...
 ...
```

Example: recursive descent methods

statement -> assignment | block
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE

```
class Parser {
void statement() {
  switch(token) {
   case ID: assignment(); break;
   case LBRACE: block(); break;
   default: error("Expecting statement, found: " + token);
void assignment() {
  accept(ID); accept(ASSIGN); expr(); accept(SEMICOLON);
void block() {
  accept(LBRACE);
  while (token!=RBRACE) { statement(); }
  accept(RBRACE);
```

expr -> name params | name

What would happen in a recursive-descent parser?

Could the grammar be LL(2)? LL(k)?

expr -> name params | name

This is called *common prefix*

What would happen in a recursive-descent parser? Answer: The expr method would not know which alternative to call

Could the grammar be LL(2)? LL(k)? Answer: This depends on the definition of name

expr -> expr "+" term

What would happen in a recursive-descent parser?

Could the grammar be LL(2)? LL(k)?

expr -> expr "+" term

This is called *left recursion*

What would happen in a recursive-descent parser? *Answer*: The expr method would call expr recursively without reading any token, resulting in an endless recursion.

Could the grammar be LL(2)? LL(k)? *Answer*: No.

Dealing with common prefix of limited length:

Local lookahead

LL(2) grammar:

statement -> assignment | block | callStmt
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE
callStmt -> ID LPAR expr RPAR SEMICOLON

void statement() ...

Dealing with common prefix of limited length:

Local lookahead

LL(2) grammar:

```
statement -> assignment | block | callStmt
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE
callStmt -> ID LPAR expr RPAR SEMICOLON
```

```
void statement() {
  switch(token) {
    case ID:
    if (lookahead(2) == ASSIGN) {
      assignment();
    } else {
      callStmt();
    }
    break;
    case LBRACE: block(); break;
    default: error("Expecting statement, found: " + token);
  }
```


Beaver: an LR-based parser generator

Example beaver specification

```
%class "LangParser";
%package "lang";
...
%terminals LET, IN, END, ASSIGN, MUL, ID, NUMERAL;
%goal program; // The start symbol
// Context-free grammar
program = exp;
exp = factor | exp MUL factor;
factor = let | numeral | id;
let = LET id ASSIGN exp IN exp END;
numeral = NUMERAL;
id = ID:
```

Later on, we will extend this specification with semantic actions to build the syntax tree.

Regular Expressions vs Context-Free Grammars

	RE	CFG
Typical Alphabet	characters	terminal symbols (tokens)
Language is a set of	strings (char sequences)	sentences (token sequences)
Used for	tokens	parse trees
Power	iteration	recursion
Recognizer	DFA	DFA with stack

The Chomsky hierarchy of formal grammars

Grammar	Rule patterns	Туре
regular	$X \rightarrow aY$ or $X \rightarrow a$ or $X \rightarrow \epsilon$	3
context free	X -> γ	2
context sensitive	$\alpha \times \beta \rightarrow \alpha \gamma \beta$	1
arbitrary	γ -> δ	0

a – terminal symbol

 α , β , γ , δ – *sequences* of (terminal or nonterminal) symbols

Type(3) \subset Type (2) \subset Type(1) \subset Type(0)

The Chomsky hierarchy of formal grammars

Grammar	Rule patterns	Туре
regular	$X \rightarrow aY$ or $X \rightarrow a$ or $X \rightarrow \epsilon$	3
context free	X -> γ	2
context sensitive	$\alpha \times \beta \rightarrow \alpha \gamma \beta$	1
arbitrary	γ -> δ	0

a – terminal symbol

 $\alpha, \beta, \gamma, \delta$ – sequences of (terminal or nonterminal) symbols

Type(3) \subset Type (2) \subset Type(1) \subset Type(0)

Regular grammars have the same power as regular expressions (tail recursion = iteration).

Type 2 and 3 are of practical use in compiler construction. Type 0 and 1 are only of theoretical interest.

Course overview

What we have covered:

- **Context-free grammars, derivations, parse trees**
- **Ambiguous grammars**
- Introduction to parsing, recursive-descent

You can now finish assignment 1

Summary questions

- Construct a CFG for a simple part of a programming language.
- What is a nonterminal symbol? A terminal symbol? A production? A start symbol? A parse tree?
- What is a left-hand side of a production? A right-hand side?
- Given a grammar G, what is meant by the language L(G)?
- What is a derivation step? A derivation? A leftmost derivation? A righmost derivation?
- How does a derivation correspond to a parse tree?
- What does it mean for a grammar to be ambiguous? Unambiguous?
- Give an example an ambiguous CFG.
- What is the difference between an LL and an LR parser?
- What is the difference between LL(1) and LL(2)? Or between LR(1) and LR(2)?
- Construct a recursive descent parser for a simple language.
- Give typical examples of grammars that cannot be handled by a recursivedescent parser.
- Explain why context-free grammars are more powerful than regular expressions.
- In what sense are context-free grammars "context-free"?