EDAN65: Compilers, Lecture 03
 Context-free grammars, Introduction to parsing

Görel Hedin

Revised: 2021-09-06

Course overview

runtime system

Analyzing program text

Recall: Generating the compiler:

We will use a parser generator called Beaver

Context-Free Grammars

Regular Expressions vs Context-Free Grammars

```
Example REs:
WHILE = "while"
ID = [a-z][a-z0-9]*
LPAR = "("
RPAR = ")"
PLUS = "+"
```

An RE can have iteration

A CFG can also have recursion
(it is possible to derive a symbol, e.g., Stmt, from itself)

Elements of a Context-Free Grammar

```
Example CFG:
Stmt -> WhileStmt
Stmt -> AssignStmt
WhileStmt -> WHILE LPAR Exp RPAR Stmt
AssignStmt -> ID EQ Exp SEMIC
```

Production rules:
$X->S_{1} S_{2} \ldots S_{n}$
where s_{k} is a symbol (terminal or nonterminal), $\mathrm{n}>=0$
Nonterminal symbols

Terminal symbols (tokens)

Start symbol
(one of the nonterminals, usually the left-hand side of the first production)

Shorthand for alternatives

```
Stmt -> WhileStmt | AssignStmt
```

is equivalent to

```
Stmt -> WhileStmt
Stmt -> AssignStmt
```


Shorthand for repetition

> Stmt*
is equivalent to
StmtList
where

StmtList -> ε | Stmt StmtList

Exercise

Construct a grammar covering this program and similar ones:

```
Example program:
while (k <= n) {sum = sum + k; k = k+1;}
```


Solution

Construct a grammar covering this program and similar ones:

Example program:

```
while (k <= n) {sum = sum + k; k = k+1;}
```

```
CFG:
Stmt -> WhileStmt | AssignStmt | Block
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Exp -> LessEq | Add | ID | INT
LessEq -> Exp "<=" Exp
Add -> Exp "+" Exp
```

(Often, simple tokens are written directly as text strings)

Parsing

Use the grammar to derive a tree for a program (top-down):

Start symbol \longrightarrow Stmt

```
Stmt -> WhileStmt | AssignStmt | Block
```

Stmt -> WhileStmt | AssignStmt | Block
WhileStmt -> "while" "(" Exp ")" Stmt
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Block -> "{" Stmt* "}"
Exp -> LessEq | Add | ID | INT
Exp -> LessEq | Add | ID | INT
LessEq -> Exp "<=" Exp
LessEq -> Exp "<=" Exp
Add -> Exp "+" Exp

```
Add -> Exp "+" Exp
```

sum $=$ sum $+k ;$

Parsing

Use the grammar to derive a tree for a program (bottom-up):

```
Stmt -> WhileStmt | AssignStmt | Block
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Exp -> LessEq | Add | ID | INT
LessEq -> Exp "<=" Exp
Add -> Exp "+" Exp
```

sum $=$ sum $+k ;$

Parsing

Use the grammar to derive a tree for a program:

Start symbol \longrightarrow Stmt

```
Stmt -> WhileStmt | AssignStmt | Block
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Exp -> LessEq | Add | ID | INT
LessEq -> Exp "<=" Exp
Add -> Exp "+" Exp
```

A parse tree includes all the input tokens as leaves.

Corresponding abstract syntax tree

 (will be discussed in later lecture)

An abstract syntax tree is similar to a parse tree, but simpler.

It includes only some of the tokens.
(Tokens that could be generated from the tree are excluded.)

EBNF vs Canonical Form

```
EBNF:
Stmt -> AssignStmt | Block
AssignStmt -> ID "=" Exp ";"
Block -> "{" Stmt* "}"
Exp -> Add | ID
Add -> Exp "+" Exp
```

(Extended) Backus-Naur Form:

- Compact, easy to read and write
- BNF has alternatives
- EBNF has additionally repetition, optionals, parentheses (like REs)
- Common notation for practical use

```
Canonical form:
Stmt -> ID "=" Exp ";"
Stmt -> "{" Stmts "}"
Stmts -> \varepsilon
Stmts -> Stmt Stmts
Exp -> Exp "+" Exp
Exp -> ID
```


Canonical form:

- Core formalism for CFGs
- Useful for proving properties and explaining algorithms

Real world example: The Java Language Specification

```
OrdinaryCompilationUnit:
    [PackageDeclaration] {ImportDeclaration} {TypeDeclaration}
PackageDeclaration:
    {PackageModifier} package Identifier {. Identifier};
PackageModifier:
    Annotation
```

See https://docs.oracle.com/javase/specs/jls/se11/html

- See Chapter 2 about the Java grammar notation.
- See Chapter 19 for the full syntax

Formal definition of CFGs

Formal definition of CFGs (canonical form)

```
A context-free grammar G = (N, T, P, S), where
N - the set of nonterminal symbols
T - the set of terminal symbols
P - the set of production rules, each with the form
    X }>>\mp@subsup{Y}{1}{}\mp@subsup{Y}{2}{}\ldots\mp@subsup{Y}{n}{
    where }X\inN,n\geq0, and Y Y < N U T
S - the start symbol (one of the nonterminals). l.e., S S N
```


Formal definition of CFGs (canonical form)

```
A context-free grammar G = (N,T, P, S), where
N - the set of nonterminal symbols
T - the set of terminal symbols
P - the set of production rules, each with the form
    X > Y Y }\mp@subsup{Y}{2}{}\ldots\mp@subsup{Y}{n}{
    where }X\inN,n\geq0, and Y Y < N U T
S - the start symbol (one of the nonterminals). l.e., }S\in
```

So, the left-hand side X of a rule is a nonterminal.

And the right-hand side $Y_{1} Y_{2} \ldots Y_{n}$ is a sequence of nonterminals and terminals.

If the rhs for a production is empty, i.e., $n=0$, we write

$$
X \rightarrow \varepsilon
$$

A grammar G defines a language $L(G)$

```
A context-free grammar G = (N,T, P, S), where
N - the set of nonterminal symbols
T - the set of terminal symbols
P - the set of production rules, each with the form
    X >> Y }\mp@subsup{Y}{2}{}\ldots\mp@subsup{Y}{n}{
    where }X\inN,n\geq0, and Y Y < N U T
S - the start symbol (one of the nonterminals). l.e., S S N
```


A grammar G defines a language $L(G)$

```
A context-free grammar G = (N, T, P, S), where
N - the set of nonterminal symbols
T - the set of terminal symbols
P - the set of production rules, each with the form
    X > Y Y }\mp@subsup{Y}{2}{}\ldots\mp@subsup{Y}{n}{
    where }X\inN,n\geq0, and Y Y < N U T
S - the start symbol (one of the nonterminals). l.e., S S N
```

G defines a language $\mathrm{L}(\mathrm{G})$ over the alphabet T
T* is the set of all possible sequences of T symbols.
$\mathrm{L}(\mathrm{G})$ is the subset of T^{*} that can be derived from the start symbol S , by following the production rules P .

Exercise

$\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$
$P=\{$
Stmt -> ID "=" Exp ";",
Stmt -> "\{" Stmts "\}" ,
Stmts -> ε,
Stmts -> Stmt Stmts
Exp -> Exp "+" Exp ,
Exp -> ID
\}
$\mathrm{N}=$
$\mathrm{T}=$
S =

$$
L(G)=
$$

Solution

```
G = (N, T, P, S)
P = {
    Stmt -> ID "=" Exp ";",
    Stmt -> "{" Stmts "}" ,
    Stmts -> & ,
    Stmts -> Stmt Stmts ,
    Exp -> Exp "+" Exp ,
    Exp -> ID
}
N = {Stmt, Exp, Stmts}
T = {ID, "=", "{", "}", ";", "+"}
S = Stmt
```


The sequences in $L(G)$ are usually called sentences or strings

Derivations

Derivation step

```
If we have a sequence of terminals and nonterminals, e.g.,
    Xa Y Yb
we can replace one of the nonterminals, applying a production
rule. This is called a derivation step.
(Swedish: Härledningssteg)
```


Derivation step

```
If we have a sequence of terminals and nonterminals, e.g.,
    \(X a Y Y b\)
we can replace one of the nonterminals, applying a production
rule. This is called a derivation step.
(Swedish: Härledningssteg)
```

```
Suppose there is a production
    Y -> X a
and we apply it for the first Y in the sequence. We write the
derivation step as follows:
XaYYb => X a X a Yb
```


Derivation

A derivation, is simply a sequence of derivation steps, e.g.:

$$
\gamma_{0}=>\gamma_{1}=>\ldots=>\gamma_{n} \quad(n \geq 0)
$$

where each γ_{i} is a sequence of terminals and nonterminals

If there is a derivation from γ_{0} to γ_{n}, we can write this as

$$
\gamma_{0}=>^{*} \gamma_{n}
$$

So this means it is possible to get from the sequence γ_{0} to the sequence γ_{n} by applying 0 or more production rules.

Definition of the language $\mathrm{L}(\mathrm{G})$

```
Recall that:
    G = (N,T, P, S)
    T* is the set of all possible sequences of T symbols.
    L(G) is the subset of T* that can be derived from the start symbol S , by applying production rules in P .
```


Definition of the language $\mathrm{L}(\mathrm{G})$

```
Recall that:
    G = (N,T, P, S)
    T* is the set of all possible sequences of T symbols.
    L(G) is the subset of T* that can be derived from the
    start symbol S, by applying production rules in P.
```

Using the concept of derivations, we can formally define $L(G)$ as follows:
$L(G)=\left\{w \in T^{*} \mid S=>^{*} w\right\}$

Exercise:

Prove that a sentence belongs to a language

Solution:

Prove that a sentence belongs to a language

```
Prove that
INT + INT * INT
```

```
belongs to the language of the following
grammar:
p}\mp@subsup{p}{1}{}: Exp -> Exp "+" Exp
p}\mp@subsup{2}{2}{:}:\operatorname{Exp}->>\operatorname{Exp "*" Exp
p}\mp@subsup{\mp@code{3}}{0}{: Exp }->\mathrm{ INT
```

```
Proof:
(by showing all the derivation steps from the start symbol Exp)
Exp
=>p1 Exp "+" Exp
=>p3 INT "+" Exp
=>22 INT "+" Exp "*" Exp
=>p3 INT "+" INT "*" Exp
=>P3 INT "+" INT "*" INT
```


Leftmost and rightmost derivations

```
p
p}\mp@subsup{\mp@code{2}}{2}{: Exp -> Exp "*" Exp
p3: Exp }->\mathrm{ INT
```

```
In a leftmost derivation, the
leftmost nonterminal is replaced
in each derivation step, e.g.,:
Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT
```


Leftmost and rightmost derivations

```
p
p}\mp@subsup{p}{2}{\prime}: Exp -> Exp "*" Exp
p
```

```
In a leftmost derivation, the
leftmost nonterminal is replaced
in each derivation step, e.g.,:
Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT
```

```
In a rightmost derivation, the
rightmost nonterminal is replaced in
each derivation step, e.g.,:
Exp =>
Exp "+" Exp =>
Exp "+" Exp "*" Exp =>
Exp "+" Exp "*" INT =>
Exp "+" INT "*" INT =>
INT "+" INT "*" INT
```

LL parsing algorithms use leftmost derivation. LR parsing algorithms use rightmost derivation. Will be discussed in later lectures.

A derivation corresponds to building a parse tree

```
Grammar:
    Exp -> Exp "+" Exp
    Exp -> Exp "*" Exp
    Exp -> INT
```

Exercise: draw the parse tree (also called derivation tree).

```
Example derivation:
Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT
```


A derivation corresponds to building a parse tree

```
Grammar:
    Exp -> Exp "+" Exp
    Exp -> Exp "*" Exp
    Exp -> INT
```

```
Example derivation:
Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT
```

Parse tree (derivation tree):

Ambiguities

Exercise:

Can we do another derivation of the same sentence,

```
Exp -> Exp "+" Exp
Exp ->> Exp "*" Exp
Exp -> INT
``` that gives a different parse tree?

One derivation and parse tree
Other derivation that gives different parse tree
```

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

```


\section*{Solution:}

Can we do another derivation of the same sentence,
```

Exp -> Exp "+" Exp
Exp -> Exp "*" Exp
Exp }->\mathrm{ INT

``` that gives a different parse tree?

One derivation and parse tree
```

Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

```

Other derivation that gives different parse tree
```

Exp =>
Exp "*" Exp =>
Exp "+" Exp "*" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT

```


Which parse tree would we prefer?

\section*{Ambiguous context-free grammars}

A CFG is ambiguous if a sentence in the language can be derived by two (or more) different parse trees.

A CFG is unambiguous if each sentence in the language can be derived by only one parse tree.
(Swedish: tvetydig, otvetydig)

Note! There can be many different derivations that give the same parse tree.

How can we know if a CFG is ambiguous?

\section*{How can we know if a CFG is ambiguous?}

If we find an example of an ambiguity, we know the grammar is ambiguous.

There are algorithms for deciding if a CFG belongs to certain subsets of CFGs, e.g. LL, LR, etc. (See later lectures.) These grammars are unambiguous.

But in the general case, the problem is undecidable: it is not possible to construct a general algorithm that decides ambiguity for an arbitrary CFG.

Strategies for eliminating ambiguities, next lecture.

\section*{Parsing}

\section*{Different parsing algorithms}

\section*{Different parsing algorithms}

\section*{LL: \\ Left-to-right scan \\ Leftmost derivation \\ Builds tree top-down Simple to understand}

\section*{LR:}

Left-to-right scan
Rightmost derivation
Builds tree bottom-up
More powerful

\section*{LL and LR parsers: main idea}

The token is called lookahead. \(\mathrm{LL}(k)\) and \(\operatorname{LR}(k)\) use \(k\) lookahead tokens.

\section*{Recursive-descent parsing}

A way of programming an \(\mathrm{LL}(1)\) parser by recursive method calls
\[
\begin{aligned}
& A \rightarrow B|C| D \\
& B \rightarrow e C f D \\
& C \rightarrow \ldots \\
& D \rightarrow \ldots
\end{aligned}
\]

\section*{Recursive-descent parsing}

A way of programming an \(\mathrm{LL}(1)\) parser by recursive method calls
\[
\begin{aligned}
& A \rightarrow B|C| D \\
& B \rightarrow e C f D \\
& C \rightarrow \ldots \\
& D \rightarrow \ldots
\end{aligned}
\]

Assume a BNF grammar with exactly one production rule for each nonterminal. (Can easily be generalized to EBNF.)

Each production rule RHS is either
1. a sequence of token/nonterminal symbols, or
2. a set of nonterminal symbol alternatives

For each nonterminal, a method is constructed. The method
1. matches tokens and calls nonterminal methods, or
2. calls one of the nonterminal methods - which one depends on the lookahead token.

If the lookahead token does not match, a parsing error is reported.

\section*{Example Java implementation: overview}
```

statement -> assignment | block
assignment -> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE

```
```

class Parser {
private int token;
void accept(int t) {...}
void error(String str) {...}
void statement() {...}
void assignment() {...}
void block() {...}
...
}

```
// current lookahead token
// accept t and read in next token
// generate error message

\section*{Example: Parser skeleton details}
```

statement -> assignment | block
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE
expr -> ...

```
```

class Parser {
final static int ID=1, WHILE=2, DO=3, ASSIGN=4, ...;
private int token; // current lookahead token
void accept(int t) { // accept t and read in next token
if (token==t) {
token = nextToken();
} else {
error("Expected " + t + " , but found " + token);
}
}
void error(String str) {...} // generate error message
private int nextToken() {...} // read next token from scanner
void statement() ...
...
}

```

\section*{Example: recursive descent methods}
```

statement -> assignment | block
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE

```
```

class Parser {
void statement() {
switch(token) {
case ID: assignment(); break;
case LBRACE: block(); break;
default: error("Expecting statement, found: " + token);
}
}
void assignment() {
accept(ID); accept(ASSIGN); expr(); accept(SEMICOLON);
}
void block() {
accept(LBRACE);
while (token!=RBRACE) { statement(); }
accept(RBRACE);
}
}

```

\section*{Is this grammar LL(1)?}
```

expr -> name params | name

```

What would happen in a recursive-descent parser?

Could the grammar be \(\operatorname{LL}(2)\) ? \(\operatorname{LL}(\mathrm{k})\) ?

\section*{Is this grammar LL(1)?}
```

expr -> name params | name

```

This is called common prefix
What would happen in a recursive-descent parser?
Answer: The expr method would not know which alternative to call

Could the grammar be \(\operatorname{LL}(2)\) ? \(\mathrm{LL}(\mathrm{k})\) ?
Answer: This depends on the definition of name

\section*{Is this grammar LL(1)?}
```

expr -> expr "+" term

```

What would happen in a recursive-descent parser?

Could the grammar be \(\operatorname{LL}(2)\) ? \(\operatorname{LL}(\mathrm{k})\) ?

\section*{Is this grammar LL(1)?}
```

expr -> expr "+" term

```

This is called left recursion
What would happen in a recursive-descent parser?
Answer: The expr method would call expr recursively without reading any token, resulting in an endless recursion.

Could the grammar be \(\operatorname{LL}(2)\) ? \(\mathrm{LL}(\mathrm{k})\) ? Answer: No.

\section*{Dealing with common prefix of limited length:}

Local lookahead
```

LL(2) grammar:
statement -> assignment | block | callStmt
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE
callStmt -> ID LPAR expr RPAR SEMICOLON

```
void statement() ...

\section*{Dealing with common prefix of limited length:}

Local lookahead
```

LL(2) grammar:
statement -> assignment | block | callStmt
assignment-> ID ASSIGN expr SEMICOLON
block -> LBRACE statement* RBRACE
callStmt -> ID LPAR expr RPAR SEMICOLON

```
```

void statement() {
switch(token) {
case ID:
if (lookahead(2) == ASSIGN) {
assignment();
} else {
callStmt();
}
break;
case LBRACE: block(); break;
default: error("Expecting statement, found: " + token);
}
}

```

\section*{Generating the parser:}

\section*{Beaver: an LR-based parser generator}

\section*{Example beaver specification}
```

%class "LangParser";
%package "lang";
%terminals LET, IN, END, ASSIGN, MUL, ID, NUMERAL;
%goal program; // The start symbol
// Context-free grammar
program = exp;
exp = factor | exp MUL factor;
factor = let | numeral | id;
let = LET id ASSIGN exp IN exp END;
numeral = NUMERAL;
id = ID;

```

Later on, we will extend this specification with semantic actions to build the syntax tree.

\section*{Regular Expressions vs Context-Free Grammars}
\begin{tabular}{|c|c|c|}
\hline & RE & CFG \\
\hline Typical Alphabet & characters & terminal symbols (tokens) \\
\hline Language is a set of ... & strings (char sequences) & sentences (token sequences) \\
\hline Used for... & tokens & parse trees \\
\hline Power & iteration & recursion \\
\hline Recognizer & DFA & DFA with stack \\
\hline
\end{tabular}

\section*{The Chomsky hierarchy of formal grammars}
\begin{tabular}{|c|c|c|}
\hline Grammar & Rule patterns & Type \\
\hline regular & \(X \rightarrow\) aY or \(X \rightarrow\) a or \(X \rightarrow \varepsilon\) & 3 \\
\hline context free & \(X \rightarrow \gamma\) & 2 \\
\hline context sensitive & \(\alpha X \beta \rightarrow \alpha \gamma \beta\) & 1 \\
\hline arbitrary & \(\gamma \rightarrow \delta\) & 0 \\
\hline
\end{tabular}
a - terminal symbol
\(\alpha, \beta, \gamma, \delta\)-sequences of (terminal or nonterminal) symbols
Type (3) \(\subset\) Type \((2) \subset\) Type \((1) \subset\) Type \((0)\)

\section*{The Chomsky hierarchy of formal grammars}
\begin{tabular}{|c|c|c|}
\hline Grammar & Rule patterns & Type \\
\hline regular & \(X \rightarrow\) aY or \(X \rightarrow\) a or \(X \rightarrow \varepsilon\) & 3 \\
\hline context free & \(x \rightarrow \gamma\) & 2 \\
\hline context sensitive & \(\alpha \times \beta \rightarrow \alpha \gamma \beta\) & 1 \\
\hline arbitrary & \(\gamma \rightarrow \delta\) & 0 \\
\hline
\end{tabular}
a - terminal symbol
\(\alpha, \beta, \gamma, \delta\)-sequences of (terminal or nonterminal) symbols
Type (3) \(\subset\) Type \((2) \subset\) Type \((1) \subset\) Type \((0)\)

Regular grammars have the same power as regular expressions (tail recursion = iteration).

Type 2 and 3 are of practical use in compiler construction. Type 0 and 1 are only of theoretical interest.

\section*{Course overview}

What we have covered:
Context-free grammars, derivations, parse trees
Ambiguous grammars
Introduction to parsing, recursive-descent
You can now finish assignment 1

\section*{Summary questions}
- Construct a CFG for a simple part of a programming language.
- What is a nonterminal symbol? A terminal symbol? A production? A start symbol? A parse tree?
- What is a left-hand side of a production? A right-hand side?
- Given a grammar G , what is meant by the language \(\mathrm{L}(\mathrm{G})\) ?
- What is a derivation step? A derivation? A leftmost derivation? A righmost derivation?
- How does a derivation correspond to a parse tree?
- What does it mean for a grammar to be ambiguous? Unambiguous?
- Give an example an ambiguous CFG.
- What is the difference between an LL and an LR parser?
- What is the difference between \(\operatorname{LL}(1)\) and \(\operatorname{LL}(2)\) ? Or between \(\operatorname{LR}(1)\) and \(\operatorname{LR}(2)\) ?
- Construct a recursive descent parser for a simple language.
- Give typical examples of grammars that cannot be handled by a recursivedescent parser.
- Explain why context-free grammars are more powerful than regular expressions.
- In what sense are context-free grammars "context-free"?```

