
EDAN65: Compilers, Lecture 02

Regular expressions and scanning

Görel Hedin
Revised: 2021-08-31

Course overview

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2EDAN65, Lecture 02

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

This lecture

Analyzing program text

EDAN65, Lecture 02 3

sum = sum + k

AssignStmt

Exp

Add

Exp Exp

ID EQ ID PLUS ID
program text

tokens

parse tree

This lecture

How split this Java code into tokens?

EDAN65, Lecture 02 4

sum = sum + k;

// possibly print...

if (sum <= 100)

print("The sum is at most 100");

How split this Java code into tokens?

EDAN65, Lecture 02 5

sum = sum + k;\n

// possibly print...\n

if (sum <= 100)\n

print("The sum is at most 100");\n

token

whitespace and comments

Recall: Generating the compiler:

Semantic analyzer

EDAN65, Lecture 02

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions Scanner generator

Context-free
grammar

Parser
generator

Attribute
grammar

Attribute evaluator
generator

We will use a scanner
generator called JFlex

6

tokens

text

tree

Some typical tokens

EDAN65, Lecture 02 7

Token Example lexemes

IF
THEN
FOR

if
then
for

ID B alpha k10

INT
FLOAT
STRING
CHAR

1230 99 2016
3.1416 0.2
"Hello" "" "100%"
'A' 'c' '%'

PLUS
INCR
NE

+
++
!=

SEMI
COMMA
LPAREN

;
,
(

Reserved words
(keywords)

Identifiers

Literals

Operators

Separators

Some typical tokens

EDAN65, Lecture 02 8

Token Example lexemes

IF
THEN
FOR

if
then
for

ID B alpha k10

INT
FLOAT
STRING
CHAR

1230 99 2016
3.1416 0.2
"Hello" "" "100%"
'A' 'c' '%'

PLUS
INCR
NE

+
++
!=

SEMI
COMMA
LPAREN

;
,
(

Regular expression

"if"
"then"
"for"
[A-Za-z][A-Za-z0-9]*

[0-9]+
[0-9]+ "." [0-9]+
\" [^\"]* \"
\' [^\'] \'

"+"
"++"
"!="
";"
","
"("

JFlex syntax

Reserved words
(keywords)

Identifiers

Literals

Operators

Separators

Formal languages

EDAN65, Lecture 02 9

Formal languages

• An alphabet, Σ, is a set of symbols (nonempty and finite).
• A string is a sequence of symbols (each string is finite)
• A formal language, L, is a set of strings (can be infinite).

• We would like to have rules or algorithms for defining a
language – deciding if a certain string over the alphabet
belongs to the language or not.

EDAN65, Lecture 02 10

Example: Languages over binary numbers

Suppose we have the alphabet Σ = {0, 1}

Example languages:
• The set of all possible combinations of zeros and ones:

L0 =
• All binary numbers without unnecessary leading zeros:

L1 =
• All binary numbers with two digits:

L2 =
• ...

EDAN65, Lecture 02 11

Example: Languages over binary numbers

Suppose we have the alphabet Σ = {0, 1}

Example languages:
• The set of all possible combinations of zeros and ones:

L0 = {"0", "1", "00", "01", "10", "11", "000", ...}
• All binary numbers without unnecessary leading zeros:

L1 = {"0", "1", "10", "11", "100", "101", "110", "111", "1000", ...}
• All binary numbers with two digits:

L2 = {"00", "01", "10", "11"}
• ...

EDAN65, Lecture 02 12

Example: Languages over UNICODE

Here, the alphabet Σ is the set of UNICODE characters

Example languages:
• All possible Java keywords: {"class", "import", "public", ...}
• All possible lexemes corresponding to Java tokens.
• All possible lexemes corresponding to Java whitespace.
• All binary numbers
• ...

EDAN65, Lecture 02 13

Example: Languages over Java tokens

Here, the alphabet Σ is the set of Java tokens

Example languages:
• All syntactically correct Java programs
• All that are syntactically incorrect
• All that are compile-time correct
• All that terminate
• ...

EDAN65, Lecture 02 14

Example: Languages over Java tokens

Here, the alphabet Σ is the set of Java tokens

Example languages:
• All syntactically correct Java programs
• All that are syntactically incorrect
• All that are compile-time correct
• All that terminate
• ...

EDAN65, Lecture 02 15

(But this language cannot be computed:
Termination is undecidable: it is not
possible to construct an algorithm that
decides for any string, if it is a
terminating program or not.)

Different kinds of rules

Increasingly powerful:
• Regular expressions (for tokens)
• Context-free grammars (for syntax trees)
• Attribute grammars (context-free grammar + extra rules for

further restricting the language)

EDAN65, Lecture 02 16

Regular expressions (core notation)
RE read is called

a a symbol

M | N M or N alternative

M N M followed by N concatenation

e the empty string epsilon

M* zero or more M repetition (Kleene star)

(M) scope

EDAN65, Lecture 02 17

where a is a symbol in the alphabet (e.g., {0,1} or UNICODE)
and M and N are regular expressions

Each regular expression defines a language over the alphabet
(a set of strings that belong to the langauge).

Priorities: M | N P* means M | (N (P*))

Example

a | b c*

EDAN65, Lecture 02 18

Example

a | b c*

means

{"a", "b", "bc", "bcc", "bccc", ...}

EDAN65, Lecture 02 19

Another example

(a | b | e) c*

EDAN65, Lecture 02 20

Another example

(a | b | e) c*

means

{"a", "b", "", "ac", "bc", "c", "acc", "bcc", "cc", ...}

EDAN65, Lecture 02 21

REs: core + extended notation
Core RE read is called

a a symbol

M | N M or N alternative

M N M followed by N concatenation

e the empty string epsilon

M* zero or more M repetition (Kleene star)

(M)

EDAN65, Lecture 02 22

Extended RE read means

M+ at least one ... M M*

M? optional ... e | M

[aou]
[a-zA-Z]

one of ... (a character class) a | o | u
a | b | ... | z | A | B | ... | Z

[^0-9]
(Appel notation: ~[0-9])

not ... one character, but not
anyone of those listed

"a+b" the string ... a \+ b

Exercise
Regular
expression

Language

(ab)+ c?
[defq]
[g-k]
[a-z]*
[^b-d]
("hi")*

EDAN65, Lecture 02 23

assuming the alphabet is {a, b, ..., z}

Solution
Regular
expression

Language

(ab)+ c? {"ab", "abab", ..., "abc", "ababc", ...}
[defq] {"d", "e", "f", "q"}
[g-k] {"g", "h", "i", "j", "k"}
[a-z]* {"", "a", "b", "c", ..., "z", "aa", "ab", ... "az", "ba", "bb",

... "bz", "ca", ...}
[^b-d] {"a", "e", "f", ..., "z"}
("hi")* {"", "hi", "hihi", "hihihi", ...}

EDAN65, Lecture 02 24

assuming the alphabet is {a, b, ..., z}

Exercise
Write a regular expression that defines the language of all decimal
numbers, like

3.14 0.75 4711 0 ...

But not numbers lacking an integer part. And not numbers with a
decimal point but lacking a fractional part. So not numbers like

17. .236 .

Leading and trailing zeros are allowed. So the following are ok:

007 008.00 0.0 1.700

a) Use the extended notation.
b) Then translate the expression to the core notation
c) Then write an expression that disallows unnecessary leading

zeros (in the extended notation)

EDAN65, Lecture 02 25

Core RE

a

M | N

M N

e

M*

(M)

Extended RE

M+

M?

[aou]
[a-zA-Z]

[^0-9]

"a+b"

Solution
a)
[0-9]+ ("."[0-9]+)?

b)
(0 |...| 9)(0 |...| 9)* (e | "." (0 |...| 9) (0 |...| 9)*)

c)
(0 | [1-9] [0-9]*) ("."[0-9]+)?

EDAN65, Lecture 02 26

Escaped characters

EDAN65, Lecture 02 27

Use backslash to escape metacharacters and
non-printing control characters.

Metacharacters

\+

*

\(

\)

\|

\\

...

Non-printing control characters

\n newline

\r return

\t tab

\f formfeed

...

Some typical non-tokens

EDAN65, Lecture 02 28

Non-Token Example lexemes

WHITESPACE blank tab newline
return

ENDOFLINECOMMENT // comment

Non-tokens are also recognized by the scanner, just like tokens.
But they are not sent on to the parser.

Some typical non-tokens

EDAN65, Lecture 02 29

Non-Token Example lexemes

WHITESPACE blank tab newline
return

ENDOFLINECOMMENT // comment

Regular expression (jflex)

" " | \t | \n | \r

"//" [^\n\r]* [\n\r]?

Non-tokens are also recognized by the scanner, just like tokens.
But they are not sent on to the parser.

JFlex syntax

(The newline/return ending an end-of-line comment is optional in order to allow a
file to end with an end-of-line comment, without an extra newline/return.)

JFlex: A scanner generator
Generating a scanner for a language lang

EDAN65, Lecture 02 30

Program.lang

LangScanner.java

LangParser.java

characters

tokens

lang.jflex jflex.jar

Scanner
specification with

regular exprs

Scanner generator

A JFlex specification

EDAN65, Lecture 02 31

package lang; // the generated scanner will belong to the package lang
import lang.Token; // Our own class for tokens
...

// ignore whitespace
" " | \t | \n | \r | \f { /* ignore */ }

// tokens
"if" { return new Token("IF"); }
"=" { return new Token("ASSIGN"); }
"<" { return new Token("LT"); }
"<=" { return new Token("LE"); }
[a-zA-Z]+ { return new Token("ID", yytext()); }
...

Rules and lexical actions
Each rule has the form:

regular-expression { lexical action }
The lexical action consists of arbitrary Java code.
It is run when a regular expression is matched.
The method yytext() returns the lexeme (the token value).

A JFlex specification

EDAN65, Lecture 02 32

package lang; // the generated scanner will belong to the package lang
import lang.Token; // Our own class for tokens
...

// ignore whitespace
" " | \t | \n | \r | \f { /* ignore */ }

// tokens
"if" { return new Token("IF"); }
"=" { return new Token("ASSIGN"); }
"<" { return new Token("LT"); }
"<=" { return new Token("LE"); }
[a-zA-Z]+ { return new Token("ID", yytext()); }
...

Rules and lexical actions
Each rule has the form:

regular-expression { lexical action }
The lexical action consists of arbitrary Java code.
It is run when a regular expression is matched.
The method yytext() returns the lexeme (the token value).

What rules are used when
scanning "a < b"?

Ambiguities?

EDAN65, Lecture 02 33

package lang; // the generated scanner will belong to the package lang
import lang.Token; // Class for tokens
...

// ignore whitespace
" " | \t | \n | \r | \f { /* ignore */ }

// tokens
"if" { return new Token("IF"); }
"=" { return new Token("ASSIGN"); }
"<" { return new Token("LT"); }
"<=" { return new Token("LE"); }
[a-zA-Z]+ { return new Token("ID", yytext()); }
...

Ambiguities?

EDAN65, Lecture 02 34

package lang; // the generated scanner will belong to the package lang
import lang.Token; // Class for tokens
...

// ignore whitespace
" " | \t | \n | \r | \f { /* ignore */ }

// tokens
"if" { return new Token("IF"); }
"=" { return new Token("ASSIGN"); }
"<" { return new Token("LT"); }
"<=" { return new Token("LE"); }
[a-zA-Z]+ { return new Token("ID", yytext()); }
...

Are the token definitions ambiguous?
Which rules match "<="?
Which rules match "if"?
Which rules match "ifff"?
Which rules match "xyz"?

Extra rules for resolving ambiguities

Longest match
If one rule can be used to match a token, but there is another rule
that will match a longer token, the latter rule will be chosen. This way,
the scanner will match the longest token possible.

Rule priority
If two rules can be used to match the same sequence of characters,
the first one takes priority.

EDAN65, Lecture 02 35

Implementation of scanners
Observation:

Regular expressions are equivalent to finite automata (finite-state machines).
(They can recognize the same class of formal languages: the regular languages.)

Overall approach:
• Translate each token regular expression to a finite automaton.

Label the final state with the token.
• Merge all the automata.
• The resulting automaton will in general be nondeterministic
• Translate the nondeterministic automaton to a deterministic automaton.
• Implement the deterministic automaton,

either using switch statements or a table.

A scanner generator automates this process.

EDAN65, Lecture 02 36

Finite automaton

EDAN65, Lecture 02 37

state

a transition

start state

final state

[ab] c* d?
Regular expression: ε-transitionε

Finite automaton

EDAN65, Lecture 02 38

state

a transition

start state

final state

[ab] c* d?

a c

d

b

or, with shorthand for several
transitions between the same states:

ab

c

d

Regular expression: ε-transitionε

Construct an automaton for each token regexp

EDAN65, Lecture 02 39

"if"

[0-9]+

" " | \n | \t

[a-zA-Z]+

Construct an automaton for each token regexp

EDAN65, Lecture 02 40

fi IF

0-9 INT

0-9

" "\n\t WHITESPACE

a-zA-Z ID

a-zA-Z

"if"

[0-9]+

" " | \n | \t

[a-zA-Z]+

Merge the start states of the automata

EDAN65, Lecture 02

f

i

IF

0-9 INT

0-9

" "\n\t

WHITESPACE

a-zA-Z

ID

a-zA-Z

Is the new automaton deterministic?

41

Deterministic finite automata

EDAN65, Lecture 02 42

1

a 2

3a

1
ε

2

1

a 2

3b

Deterministic finite automaton: each transition is uniquely determined by the next symbol.

Deterministic finite automata

EDAN65, Lecture 02 43

1

a 2

3a

1
ε

2

1

a 2

3b

Deterministic finite automaton: each transition is uniquely determined by the next symbol.

Nondeterministic: if we read "a" when in state 1, we
don't know if we should go to state 2 or 3.

Nondeterministic: when we are in state 1, we don't know
if we should stay there, or go to state 2 without reading
any input. (Epsilon denotes the empty string.)

Deterministic: when we are in state 1, the next symbol
determines if we go to state 2 or 3.

DFA versus NFA
Deterministic Finite Automaton (DFA)
A finite automaton is deterministic if

– all outgoing edges from any given state have disjoint character sets
– there are no epsilon edges

Can be implemented efficiently

Non-deterministic Finite Automaton (NFA)
An NFA may have

– two outgoing edges with overlapping character sets
– epsilon edges

Every NFA can be translated to an equivalent DFA.

EDAN65, Lecture 02 44

Example 1

EDAN65, Lecture 02 45

2 3
b

a X

1

5a Y

NFA

4
bc

Example 1

EDAN65, Lecture 02 46

2 3
b

a X

1

5a Y

NFA

4
bc

2,4

3b

a

X

1

5 Y

Still NFA

bc

2,4

3,5b

a

X,Y

1

5 Y

DFA, but ambiguous final token

c

Use rule priority to pick X
(assuming rule X is before Y)

2,4

3,5b

a

X

1

5 Y
c

Example 2

EDAN65, Lecture 02 47

2 3
ab

e X

1

5a Y

NFA

4
c

Example 2

EDAN65, Lecture 02 48

2 3
ab

e X

1

5a Y

NFA

4
c

3ab X

1,2

5a Y

still NFA

4
c

3
b

a

X

1,2

5 Y

Equivalent DFA

c
3,4

X

Should we stay at (3,4), or continue to 5?
Use longest match to continue if possible.

Translating an NFA to a DFA
Simulate the NFA

– keep track of a set of current NFA-states
– follow ε edges to extend the current set (take the closure)

Construct the corresponding DFA
– Each such set of NFA states corresponds to one DFA state
– If any of the NFA states is final, the DFA state is also final,

and is marked with the corresponding token.
– If there is more than one token to choose from, select the

token that is defined first (rule priority).

(Minimize the DFA for efficiency)

EDAN65, Lecture 02 49

Example

EDAN65, Lecture 02 50

2 3
f

i
IF

1

4

a-z

ID

a-z

NFA

Example

EDAN65, Lecture 02 51

2 3
f

i
IF

1

4

a-z

ID

a-z

NFA

3,4
f

i
IF

1

4

a-hj-z
ID

a-z

DFA

a-z
a-eg-z

2,4
ID

Error handling

EDAN65, Lecture 02 52

3
f

i
IF

1

4
a-hj-z

ID

a-z
a-z

a-eg-z

Conceptually (we typically don't draw this explicitly – too much clutter):
• Add a "dead state" (state 0), corresponding to erroneous input.
• Add transitions to the "dead state" for all erroneous input.
• Generate an "ERROR token" when the dead state is reached.

2

ID

Error handling

EDAN65, Lecture 02 53

3
f

i
IF

1

4
a-hj-z

ID

a-z
a-z

a-eg-z

0

ERROR

Conceptually (we typically don't draw this explicitly – too much clutter):
• Add a "dead state" (state 0), corresponding to erroneous input.
• Add transitions to the "dead state" for all erroneous input.
• Generate an "ERROR token" when the dead state is reached.

2

ID

Error handling

EDAN65, Lecture 02 54

3
f

i
IF

1

4
a-hj-z

ID

a-z
a-z

a-eg-z

0

ERROR

^a-z
^a-z ^a-z^a-z

Conceptually (we typically don't draw this explicitly – too much clutter):
• Add a "dead state" (state 0), corresponding to erroneous input.
• Add transitions to the "dead state" for all erroneous input.
• Generate an "ERROR token" when the dead state is reached.

2

ID

Implementation alternatives for DFAs

Table-driven
– Represent the automaton by a table
– Additional table to keep track of final states and token kinds
– A global variable keeps track of the current state

Switch statements
– Each state is implemented as a switch statement
– Each case implements a state transition as a jump (goto) to another

switch statement
– The current state is represented by the program counter.

EDAN65, Lecture 02 55

Table-driven implementation

EDAN65, Lecture 02 56

... + ... a ... e f g ... h i j ... z ... final token
kind

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 true ERROR

1 0 5 0 4 4 4 4 4 4 4 2 4 4 4 0 false

2 0 0 0 4 4 4 3 4 4 4 4 4 4 4 0 true ID

3 0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 true IF

4 0 0 0 4 4 4 4 4 4 4 4 4 4 4 0 true ID

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 true PLUS

3
f

i
IF

1

4
a-hj-z

ID

a-z
a-z

a-eg-z

2
ID

5PLUS

+

alphabet

st
at

es

Scanner implementation, design

EDAN65, Lecture 02 57

ParserScanner

Token nextToken()

File

char nextChar()

Token

int kind()
String value()

call call

Scanner implementation, sketch

EDAN65, Lecture 02 58

Token nextToken() {
state = 1; // start state
while (! isFinal[state]) {

ch = file.readChar();
state = edges[state, ch];

}
return new Token(kind[state]);

}

Idea: Scan the next token by
• starting in the start state
• scan characters until we reach a final state
• return a new token

Scanner implementation, sketch

EDAN65, Lecture 02 59

Token nextToken() {
state = 1; // start state
while (! isFinal[state]) {

ch = file.readChar();
state = edges[state, ch];

}
return new Token(kind[state]);

}

Needs to be extended with handling of:
• longest match
• end of file
• non tokens (like whitespace)
• token values (like the identifier name)
• errors (no token could be matched)

Idea: Scan the next token by
• starting in the start state
• scan characters until we reach a final state
• return a new token

Extend to longest match, design

EDAN65, Lecture 02 60

ParserScanner

Token nextToken()

PushbackFile

char readChar()
void pushback(String)

Token

int kind()
String value()

File

char readChar()

Idea:
• When a token is matched, keep track of it, but don't stop scanning.
• When the error state is reached, return the last (=longest) token matched.
• Push read characters that are unused back into the file, so they can be scanned again.
• Use a PushbackFile to accomplish this.

Extend to handle longest match, sketch

EDAN65, Lecture 02 61

Token nextToken() {
state = 1;
str = "";
lastFinalState = 0; lastTokenValue = "";
while (state != 0) {

ch = pushbackfile.readChar();
str = str + ch;
state = edges[state, ch];
if (isFinal[state]) {

lastFinalState = state;
lastTokenValue = str;

}
}
pushbackfile.pushback(str.substring(lastTokenValue.length));
return new Token(kind[lastFinalState], lastTokenValue);

}

// In Java, StringBuilder would be more efficient

• When a token is matched (a final state reached), don’t stop scanning.
• Keep track of the currently scanned string, str.
• Keep track of the latest matched token (lastFinalState, lastTokenValue).
• Continue scanning until we reach the error state.
• Restore the input stream using PushBackFile.
• Return the latest matched token.
• (or return the ERROR token if there was no latest matched token)

Handling End-of-file (EOF) and non-tokens

EOF
– construct an explicit EOF token when the end of the file is reached

Non-tokens (Whitespace & Comments)
– view as tokens of a special kind
– scan them as normal tokens, but don’t create token objects for them
– loop in next() until a real token has been found

Errors
– construct an explicit ERROR token to be returned when no valid token

can be found.

EDAN65, Lecture 02 62

Specifying EOF and ERROR in JFlex

EDAN65, Lecture 02 63

package lang; // the generated scanner will belong to the package lang
import lang.Token; // Class for tokens
...

// ignore whitespace
" " | \t | \n | \r | \f { /* ignore */ }

// tokens
"if" { return new Token("IF"); }
"=" { return new Token("ASSIGN"); }
"<" { return new Token("LT"); }
"<=" { return new Token("LE"); }
[a-zA-Z]+ { return new Token("ID", yytext()); }
...
<<EOF>> { return new Token("EOF"); }
[^] { return new Token("ERROR"); }

Specifying EOF and ERROR in JFlex

EDAN65, Lecture 02 64

package lang; // the generated scanner will belong to the package lang
import lang.Token; // Class for tokens
...

// ignore whitespace
" " | \t | \n | \r | \f { /* ignore */ }

// tokens
"if" { return new Token("IF"); }
"=" { return new Token("ASSIGN"); }
"<" { return new Token("LT"); }
"<=" { return new Token("LE"); }
[a-zA-Z]+ { return new Token("ID", yytext()); }
...
<<EOF>> { return new Token("EOF"); }
[^] { return new Token("ERROR"); }

<<EOF>> is a special regular expression in JFlex, matching end of file.

[^] means any character. Due to rule priority, this will match any character not
matched by previous rules.

Example scanner generators

EDAN65, Lecture 02 65

tool author generates

lex Schmidt, Lesk. 1975 C-code

flex ("fast lex") Paxon. 1987 C-code

jlex Java code

jflex Java code

...

Limitations of regular expressions
for scanning

EDAN65, Lecture 02 66

• Nested comments?
• Layout-sensitive syntax?
• Context-sensitive token definitions?

For example, multi-language documents.

Limitations of regular expressions
for scanning

EDAN65, Lecture 02 67

• Nested comments?
• Layout-sensitive syntax?
• Context-sensitive token definitions?

For example, multi-language documents.

• Two mechanisms in scanner generators for workarounds:
– Lexical actions:

do more than create a token, e.g., count nesting levels of comments.
– Lexical states:

switch between different sets of token definitions.

Lexical states

EDAN65, Lecture 02 68

• Some tokens are difficult or impossible to define with regular expressions.

• Lexical states (sets of token rules) give the possibility to switch token sets
(DFAs) during scanning.

• Useful for multi-line comments, HTML, scanning multi-language
documents, etc.

• Supported by many scanner generators (including JFlex)

T1
T2
T3
T4
...

LEXSTATE1
T5
T6
T7
...

LEXSTATE2

Example: multi-line comments

EDAN65, Lecture 02 69

Would like to scan the complete comment as one token:

/*
int m() {

return 15 / 3 * 4 * 2;
}
*/

Example: multi-line comments

EDAN65, Lecture 02 70

Would like to scan the complete comment as one token:

/*
int m() {

return 15 / 3 * 4 * 2;
}
*/

Can be solved easily with lexical states:

"if"
"then"
ID
"/*"
...

"*/"
[^]

Default
token set

Token set used
inside comment

Example: multi-line comments

EDAN65, Lecture 02 71

Would like to scan the complete comment as one token:

/*
int m() {

return 15 / 3 * 4 * 2;
}
*/

Can be solved easily with lexical states:

"if"
"then"
ID
"/*"
...

"*/"
[^]

Default
token set

Token set used
inside comment

"/*"((*+[^/*])|([^*]))***"*/"

Writing an ordinary regular expression for this is difficult:

Example: multi-line comments

EDAN65, Lecture 02 72

Would like to scan the complete comment as one token:

/*
int m() {

return 15 / 3 * 4 * 2;
}
*/

Can be solved easily with lexical states:

"if"
"then"
ID
"/*"
...

"*/"
[^]

Default
token set

Token set used
inside comment

However, some scanner generators, like JFlex, has the special operator upto (~) that
can be used instead: "/*" ~"*/" { /* Comment */ }

"/*"((*+[^/*])|([^*]))***"*/"

Writing an ordinary regular expression for this is difficult:

Course overview

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

73EDAN65, Lecture 02

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

This lecture

Next lecture

A 1

A 1

Summary questions

74

• What is a formal language?
• What is a regular expression?
• What is meant by an ambiguous lexical definition?
• Give some typical examples of ambiguities and how they may be resolved.
• What is a lexical action?
• Give an example of how to construct an NFA for a given lexical definition
• Give an example of how to construct a DFA for a given NFA
• What is the difference between a DFA and and NFA?
• Give an example of how to implement a DFA in Java.
• How is rule priority handled in the implementation? Longest match? EOF?

Whitespace? Errors?
• What are lexical states? When are they useful?

EDAN65, Lecture 02

You can start on Assignment 1 now. But you will have to wait until the next lecture
for the parts about parsing.

