
EDAN65: Compilers
Computer Science
Lund University

Sept 5, 2018

E02: Regular expressions and scanning

E02-1: Write a regular expression describing the language of all natural numbers, 0, 1, 2,
3, ... Unnecessary initial zeros are allowed, like 00135.

E02-2: Write a regular expression describing the language of all natural binary numbers 0,
1, 10, 11, 100, ..., but where unnecessary initial zeros are not allowed.

E02-3: Write a regular expression describing the language of all arithmetic expressions with
natural numbers and the operators + and *, but without parentheses. Give some
examples of expressions in the language.

E02-4: A binary string is a string over the binary alphabet 0, 1. A binary string may be
the empty string, in contrast to binary numerals which will always have at least one
digit. Write a regular expression describing the language of all binary strings that

a) contain the string 11.
b) do not contain the string 11.

E02-5: Construct
a) an NFA that accepts all binary strings that contain the string 11. The automaton
should not be deterministic.
b) a DFA that accepts all binary strings that contain the string 11.

E02-6: Use simulation to construct a DFA that accepts the same language as the following
NFA. Mark each state in the new automaton with the corresponding state numbers
of the NFA.

1 2 3 4

a,b

ε a b

E02-7: Construct a DFA that accepts all binary strings that do not contain the string 11.

1



EDAN65: Compilers Exercise set E02

E02-8: Construct a combined DFA recognizing binary integers and binary floating point
numbers described by
BININT=[0-1]+
BINFLOAT=[0-1]+ "." [0-1]+

Make tables for a table-driven scanner.

E02-9: The following automaton describes a lexical analyzer. Give suitable names to the
final states and write down regular expressions for them.

1 2

3 4 5 6 7

8
a-z

a-z0-9

+ - 0-9

0-9

e +

-

0-9 0-9

0-9

E02-10: Suppose that the lexical analyzer for the previous example always tries to do a
longest match. How many characters past the end of a token might it have to
examine before matching the token? Give an example where this lookahead is
required.

2


